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prices. By calibrating the model to market data, a unique probability distortion is identified
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understanding of these emerging markets.
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1 Introduction

The increasing frequency and severity of natural disasters driven by climate change have
expanded the scope of private risk-sharing beyond traditional property and casualty risks.
Additionally, the rise of cyber threats due to global networking and digitalization has fur-
ther broadened this scope, challenging the conventional policyholder-insurer relationship.
Insurance-linked securities, such as catastrophe bonds and cyber bonds, actively involve the
capital markets in risk sharing today. In this system, (re)insurers or brokers initially under-
write these (tail) risks with the policyholder but subsequently transfer them to the capital
markets. As a result, they function as policyholders themselves to secure protection from the
capital markets in the event of a triggering event. These risks are largely uncorrelated with
capital market risks, making them attractive for investment due to their high returns and
diversification potential (Cummins and Weiss, 2009). However, severe losses, as exemplified
by the Covid-19 pandemic, push the limits of the capital market and underscore the necessity
for government involvement (e.g., Gründl et al., 2021; Braun et al., 2023).

With the rise of climate and cyber risks, along with the recent Covid-19 pandemic, the
presence of jump risks and their correlation with macroeconomic fundamentals has become
increasingly important. In financial markets, these factors are crucial in high-volatility ar-
eas like oil and electricity, and in hedging against stock market crashes (e.g., Caldana and
Fusai, 2013). Consequently, research on tail risks and risk premiums in financial markets is
extensive. Using S&P 500 data, Bollerslev and Todorov (2011) and Kelly and Jiang (2014)
show that a significant portion of the observed risk premiums compensates for rare events.
Andersen et al. (2020) demonstrate that compensation for negative jump risk is the primary
driver of premiums in international options markets. In a more general context, Ai and
Bhandari (2021) show that exposure to downside tail risk leads to quantitatively large and
volatile risk premium. Understanding and replicating the returns of cat bond markets, where
this risks are underwritten, is a relatively new area. Using traditional asset pricing models
such as factor models or consumption-based models can only explain small parts of the risk
premium (e.g., Braun et al., 2023). Empirical findings in the corporate bond literature also
indicate that factor models cannot adequately describe the risk premium (Dickerson et al.,
2023).

The pricing of extreme risks is based on three key principles (Zanjani, 2002): (1) share-
holders may not be able to cover large, unexpected losses; (2) shareholders expect to be
compensated for the risks they take; and (3) policyholders are concerned about the risk of
the company becoming insolvent. Calibrating the second principle with real-world data is
particularly challenging. The lack of high-frequency extreme risk data and models for cali-
brating frictions and risk premiums has led to the frequent use of unsuitable models in the
literature, such as those by Fama and French (1993) for financial institutions (e.g., Cummins
and Phillips, 2005). Factor models for the cat bond market also explain only a small part of
the risk premium (e.g., Braun et al., 2019a). For other risks such as cyber or pandemic, there
is a lack of long-term data, as the cyber bond market is relatively new, or the absence of
established markets for certain risks, such as pandemics (e.g., Gründl et al., 2021). A model
that consistently includes the market environment, correlation structures, and jump risks,
while accounting for higher-order factors, is still missing.
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Addressing this gap, this paper makes three key contributions. First, it assigns a stochas-
tic framework to each of the four risk categories from Cummins (2006), aligning them with
market conditions. This approach simplifies the process of determining necessary players,
such as whether a risk should be transferred to the capital market. Second, the study in-
troduces a comprehensive model for pricing the different risk categories and determining
risk premiums, integrating it with established option models. Since options themselves are
a hedging instrument for financial markets, this approach is particularly suitable for pric-
ing capital market products such as cat bonds or cyber bonds. The model deviates from
traditional insurance approaches by considering the market environment, correlation struc-
tures, and jump risks, while accounting for higher-order factors, and maintains a consistent
framework for all risk categories. Grounded in the model proposed by Doherty and Garven
(1986), it includes shareholders and policyholders and accounts for government frictions like
taxes. Central to this analysis are models from Margrabe (1978), focusing on the exchange
dynamics of two risky assets, and Merton (1976), incorporating jump risks. Additionally,
the closed-form solution by Cheang and Chiarella (2011) integrates these models effectively.
The underlying actuarial principle is the measure transformation as described by Esscher
(1932), Gerber and Shiu (1994), and Wang (2000), which can be characterized as probability
distortion. While the distortion is unique in simpler cases, it is not in the general case of an
incomplete market. In economic terms, Gao et al. (2019) describe this distortion as tail risk
concerns, which reflect investors’ subjective ex-ante beliefs about tail risk. Third, the paper
demonstrates the practical application of this new methodology using real loss estimates.
By calibrating model parameters with market data, the paper prices cat bonds and cyber
bonds. Despite friction and jump risk, precise market calibration allows for the calculation
of a unique measure Q for individual markets or entities, enabling a comparison of the risk
appetite across them, thus exceeding factor or consumption-based models. This paper pro-
vides initial evidence that, unlike the classic bond market, the spread in cat and cyber bonds
primarily depends on investors’ tail risk concerns, leading to a homogeneous and unique risk
profile determined by Q, independent of the cedent.

This paper is structured as follows. Section 2 introduces the model, defines its boundaries,
and describes its connection to existing pricing models. Section 3 demonstrates the market
application. Section 4 concludes.

2 Model

2.1 Risk categories

To determine which risks adhere to the traditional policyholder-(re)insurance framework and
at what point capital market involvement or government backstops are required, it is essential
to categorize them. This paper defines four risk categories based on the framework proposed
by Cummins (2006) and assigns each a mathematical framework. It is important to note
that these categories are not mutually exclusive. For instance, cyber risk may be managed
through traditional (re)insurance, transferred to the capital markets, or involve discussions of
government backstops, depending on the severity and quantile of the cumulative distribution
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function addressed (see, e.g., Kasper et al., 2024). The risk categories can be summarized as
follows:

• Locally Insurable: Pertains to independent risks characterized by moderate standard
deviations per risk and a substantial number of policies, such as the U.S. market for
personal automobile insurance. Local insurers can effectively cover these losses.

• Globally Insurable: Encompasses risks that are locally dependent but globally indepen-
dent, such as tornadoes in the American Midwest versus Australia. Local insurers may
lack the capacity to cover such losses, but global reinsurers can. Consequently, these
risks are diversifiable on a global scale through reinsurance.

• Globally Diversifiable: Refers to risks with low frequency and very high severity, such as
a $100 billion event in Florida or California. The capacity of insurance and reinsurance
companies may prove insufficient to cover such events, but these risks can be globally
diversified through capital markets.

• Globally Undiversifiable: Describes risks of such severity that they may resist global
diversification, even through capital markets. For instance, a severe earthquake in
Tokyo with losses ranging from $2.1 to $3.3 trillion. While global securities markets
might absorb a fraction of such a loss, complete diversification of the full loss is unlikely,
and government aid is likely needed.

Despite the economic coherence and comprehensiveness of these categories, which en-
compass all relevant private and public risk bearers, it is essential to address the underlying
mathematical nuances. Cummins falls short in today’s market environment, particularly for
the last two categories.1

Local insurable risks follow a straightforward framework based on the law of large num-
bers, assuming independence of losses within a loss portfolio. However, this independence
does not apply when examining globally insurable risks from a local perspective. On a global
scale, these risks exhibit no interdependence, allowing the creation of a loss portfolio of inde-
pendent losses. Thus, while there may be variations in the sizes of loss portfolios, local and
global insurable risks are mathematically comparable and can be modeled using right-skewed
and independent random variables (e.g., Eling, 2012). Globally diversifiable and globally un-
diversifiable risks share characteristics of low frequency and high severity, with heavy tail
events significantly influencing these risk profiles. They follow a structure of jump processes,
such as a compounded Poisson process (e.g., Merton, 1976; Lee and Yu, 2002), which is a
common assumption of the actuarial literature (e.g., Bowers et al., 1986). A key distinction
lies in the severity of globally undiversifiable risks, which can directly impact macroeconomic
fundamentals. These risks uniquely correlate with the economy and can trigger worldwide
shocks, as seen with the Covid-19 pandemic (e.g., Gründl et al., 2021; Braun et al., 2023).
Mathematically, in the first case, the occurrence of jumps and the jump size are uncorrelated,
while in the latter case, there is a joint jump process with correlated jump sizes.

1Cummins defines the last two categories of catastrophes as events that violate the principal insurability
condition and may be globally diversifiable through capital markets if other conditions are satisfied. He does
not specify mathematical concepts for these categories, unlike the first two.
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2.2 Shareholder and Policyholder

Inspired by Doherty and Garven (1986), a single-period model is considered. In t = 0
shareholders contribute equity S0 and policyholders pay premiums P to cover the stochastic
loss L̄. The shareholder’s opening cash flow is:

Y0 = S0 + P,

where the cash flow is invested at a risky rate r̄. The terminal cash flow is:2

Ȳ1 = (1 + r̄)
(
S0 + P

)
.

At the end of the period, the policyholders claim L̄ ≥ 0, and the government (or other
organizations such as supervisory authorities) claims frictional costs like monitoring, agency
or taxes T̄1 ≥ 0. The policyholders receive the payment:

H̄1 = min(L̄, Ȳ1)

= Ȳ1 −max(Ȳ1 − L̄, 0),

and the additional frictional costs are:

T̄1 = max[τ(Ȳ1 − L̄), 0],

where τ is the rate for frictional costs.3

Both claims exhibit cash flows analogous to a European call option,4 so the present values
are:

H0 = V (Ȳ1)− C(Ȳ1; L̄)

T0 = τC(Ȳ1; L̄),

where V (·) is a present valuation operator and C(A;B) is the current market value of a
European call option with a terminal value A and exercise price B.

The present market value of the shareholder’s return on equity, Ve, is the difference
between the market value of the portfolio, V (Ȳ1), on the one side, and the present value of
the policyholders’ claims and the present value of the frictional costs on the other side:

Ve = V (Ȳ1)−H0 − T0

= C(Ȳ1; L̄)− τC(Ȳ1; L̄).

2Doherty and Garven (1986) incorporate an adjustment to the premium investment by applying a coeffi-
cient for fundraising. This adjustment compensates for the temporal misalignment between the model period
and the average delay between premium receipt and claims payment. For the sake of model simplicity, this
adjustment is not included here.

3In the context of Doherty and Garven (1986), τ signifies the corporate tax rate, exclusively applied to
income. Thus, T̄1 = max[τ(Ȳ1 − Y0 + P − L̄), 0]. However, this depiction is excessively limiting, especially
concerning capital market involvement and overall capital costs in the context of jump risk, as discussed in
Zanjani (2002). Therefore, this aspect is further expounded upon here.

4The cash flow of a European call option is CFcall = max(A − B, 0) with terminal value A and exercise
price B.

5



In summary, shareholders hold a long position in a call option on the pre-frictional terminal
value of the asset portfolio and a short position in a call option on the frictions of that
portfolio.

Risk transfer prices are determined to yield a fair return to shareholders, achieved when
the current market value of the equity claim equals the initial investment. As Ȳ1 and Y0 are
functions contingent on P , the objective is to identify the premium P ∗ that satisfies:

Ve = C(Ȳ1(P
∗); L̄)− τC(Ȳ1(P

∗); L̄) (OM)

= S0.

Calculating P ∗ necessitates employing a suitable option-pricing framework. While Doherty
and Garven (1986) establish pricing relationships within the discrete-time, risk-neutral-
valuation framework of Rubinstein (1976), focusing on two special cases with (log-) normally
distributed stochastic components5, this study extends the analysis to stochastic processes
and accounting for jump risks. Given the stochastic nature of the exercise price, conventional
models like Black and Scholes (1973) are impractical. In a globally expanding world with
increased climate and cyber risks, the emphasis on global diversification, including capital
markets, and consideration of tail risks is becoming increasingly important.

2.3 Pricing the option

Consider tradable assets X1 and X2 under a probability measure P. Extending the option
price formula from Black and Scholes (1973), Margrabe (1978) formulated a model allowing
the exchange of two risky assets. It is assumed that all returns come from capital gains and
that no dividends are distributed.6 The dynamics for each asset are expressed as:

dXi

Xi

= µidt+ σidWi,t i ∈ {1, 2},

where µi is the instantaneous expected return per unit time, σi is the instantaneous volatility
per unit time and both assets follow a Brownian motion dWi,t with correlation ρ. This setting
has the closed-form solution:

C(X1, X2) = X1Φ(d1)−X2Φ(d2)

with d1 =
ln(X1

X2
) + 1

2
σ2(T − t)

σ
√
T − t

d2 = d1 − σ
√
T − t.

T − t represents the difference between the exercise period and the present period, Φ(·) is
the cumulative standard normal density function, and σ2 = σ2

1 − 2σ1σ2ρ+ σ2
2.

7

5Distribution assumptions like the normal distribution prove inadequate, as highlighted by Eling (2012).
6The examination of dividend payout, as discussed in papers such as Cheang and Chiarella (2011), can

be easily incorporated into the model. However, since it does not constitute a central core here, it is omitted
to prevent additional complexity, but discussed in Appendix A.2.

7For σ2 = σ2
1 and σ2 = 0, the formula from Black and Scholes (1973) is obtained.
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Globally diversifiable and globally undiversifiable risks are characterized by low frequency
and high-severity events that fall beyond the scope of Margrabe (1978). The emergence of
globally undiversifiable risk is inherently tied to economic fundamentals, indicating that not
only does the loss portfolio but also the asset side exhibit a correlated downside risk. Modeling
tail risk involves incorporating jump processes, aligning with the conceptual framework estab-
lished in Merton (1976). Unlike Margrabe, Merton’s model does not consider the exchange
of two risky assets but follows the methodology of Black and Scholes (1973). Consequently,
a synthesis of both approaches becomes essential in this context.

Let Nt be a Poisson process with a constant arrival rate of jumps λ, shared by both stocks.
The bivariate process Y = (Y1, Y2)

T represents the jump sizes, taking values y = (y1, y2)
T ∈

R2. The jump sizes Yn are independently and identically distributed as multivariate normal
N (α,ΣY ), where α = (α1, α2)

T , and the covariance matrix ΣY is given by:

ΣY =

(
δ21 ρY δ1δ2

ρY δ1δ2 δ22

)
with ρY representing the correlation between the jump sizes Y1 and Y2. The expected pro-
portional common jump sizes are expressed as:

κi = EP[exp(Yi)− 1)] =

∫
R
[exp(Yi)− 1]mP(dyi) i ∈ {1, 2},

where mP(dyi) is the density of Yi (e.g., Merton, 1976).
Next, let Ni,t be a Poisson process with a constant arrival rate of jumps λi and jump size

Zi, taking values zi ∈ R for i ∈ {1, 2}. These processes are uncorrelated and specific to each
asset. The idiosyncratic jump sizes are independently and identically normal-distributed as
N (αii, δ

2
ii). The expected proportional unique jump sizes are given by:

κZi
= EP[exp(Zi)− 1] =

∫
R
[exp(Zi)− 1]mP(dzi) i ∈ {1, 2},

where mP(dzi) is the density of Zi.
In summary, for each asset, the n-th common jumps Y1,n and Y2,n occur simultaneously,

determined by the same Poisson arrival process Nt. These jointly occurring jumps can be
linked to macroeconomic shocks in the system, representing globally undiversifiable risks. On
the other hand, the m-th jump Z1,m or k-th jump Z2,k, specific to the i-th asset, is determined
by the Poisson arrival process Ni,t. Jumps unique to each stock can be attributed solely to
idiosyncratic shocks for that particular asset, defining globally diversifiable risks.

The return dynamics of the assets can be expressed as:

dXi

Xi

=(µi − λκi − λiκZi
)dt+ σidWi,t

+

∫
R
[exp(yi)− 1]p(dyi, dt) +

∫
R
[exp(zi)− 1]p(dzi, dt) i ∈ {1, 2},
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where p(·, dt) is the Poisson measure. Poisson measures and the bivariate Wiener process are
independent. The stock prices are given by the solution:

Si,t = Si,0 exp

((
µi − λκi − λiκZi

− σ2
i

2

)
t+ σWi,t +

Nt∑
n=1

Yi,n +

Ni,t∑
m=1

Zi,m

)
i ∈ {1, 2}.

To achieve a suitable and fair evaluation of the final payoff conditioned on information
about the underlying asset prices, the probability measure P is transformed to Q using the
transformation proposed by Esscher (1932), see Appendix A.1. After applying the transfor-
mation, the change in the intensity is defined by:

λ̃ = λEP[exp(γ
TY )]

λ̃1 = λ1EP[exp(β1Z1)]

λ̃2 = λ2EP[exp(β2Z2)],

and the expected jump sizes are transformed to:

κ̃i = EQ[exp(Yi)− 1] i ∈ {1, 2}
κ̃Zi

= EQ[exp(Zi)− 1] i ∈ {1, 2}.

Hence, under Q, the distribution of the jump sizes also changes. Yn remains independently
and identically multivariate normally distributed with α̃ = α+ΣY γ; the jump sizes Zi,k are
independently and identically normally distributed with α̃ii = αii + δ2iiβi for i ∈ {1, 2}.

The parameters γ for the joint process, and βi with i ∈ {1, 2} for the distinct processes,
are fundamental factors in the transition from P to Q. The market, comprising stocks with
jump components, is inherently incomplete following the sense of Harrison and Pliska (1981).
When accounting for market prices of jump risks, multiple equivalent martingale measures
emerge, leading to different option prices. For instance, if all factors equal zero, the scenario
is akin to Merton (1976) where all jump risks are unpriced. If γ ̸= 0 and/or βi ̸= 0,
changes occur in both jump-arrival intensities and jump-size distributions. Subsequently, in
the empirical analysis attention is directed toward these parameters in the calibration process
to establish the market risk premium for the defined risk classes, underscoring their pivotal
role in the model.

For the derivation of a closed-form option pricing formula considering these factors, the
money account is assumed as the numeraire (see, e.g., Geman et al., 1995). The resulting
option price formula is based on the closed-form solution of Cheang and Chiarella (2011).8

The dynamics of the asset prices under Q are expressed as:

Xi

Xi

= rdt+ σidW̃ i, t+

∫
R
[exp(yi)− 1]q(dy, dt) +

∫
R
[exp(zi)− 1]q(dzi, dt) i ∈ {1, 2},

8Cheang and Chiarella (2011) defines the measure transformation using the Radon-Nikodym derivative,
while this paper employs the Esscher transformation, more common in actuarial literature. The Radon-
Nikodym derivative provides separate parameters for jump probability and size, whereas the Esscher trans-
formation defines a measure Q with a single parameter. The procedure for deriving the closed-form solution
remains unaffected by these different approaches. Furthermore, it can be shown that the parameters of the
Radon-Nikodym derivative have a unique relation to the parameter dervied here.
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where W̃i,t denotes standard Brownian motion components under Q, and q represents the
Poisson measures under Q. Therefore, the option price for the exchange of the two assets
can be formulated as:

C(S1, S2) =
∑
k

∑
m

∑
n

exp
(
− (λ̃1 + λ̃2 + λ̃)(T − t)

)(λ̃1(T − t))k

k!

(λ̃2(T − t))m

m!

(λ̃(T − t))n

n!

×

[
S1 exp

(
− (λ̃1κ̃Z1 + λ̃κ̃1)(T − t) + kα̃11 +

kδ211
2

+ nα̃1 +
nδ21
2

)
Φ(d1,t,k,m,n)

−S2 exp
(
− (λ̃2κ̃Z2 + λ̃κ̃2)(T − t) +mα̃22 +

mδ222
2

+ nα̃2 +
nδ22
2

)
Φ(d2,t,k,m,n)

]

where:

d1,t,k,m,n =
ln(S1

S2
) + (−λ̃(κ̃1 − κ̃2)− λ̃1κ̃Z1 + λ̃2κ̃Z2)(T − t) + µk,m,n +

σ2
k,m,n(T−t)

2

σk,m,n

√
T − t

d2,t,k,m,n = d1,t,k,m,n − σk,m,n

√
T − t,

with:

µk,m,n = k(α̃1,1 +
δ21,1
2

)−m(α̃2,2 +
δ22,2
2

) + n(α̃1 − α̃2 +
δ2

2
)

σ2
k,m,n = σ2 +

kδ211
T − t

− mδ222
T − t

+
nδ2

T − t
,

where:

δ2 = δ21 + δ22 + ρY δ1δ2.

In the absence of jump risk, when α̃i = α̃ii = 0 and δi = δii = 0, the jump intensity be-
comes zero, resulting in κ̃i = κ̃Zi

= 0 for i ∈ {1, 2}. Consequently, the option pricing formula
of Margrabe (1978) is received, returning to the original model utilized at the beginning of
the section. Given that this paper examines a single-period model, the subsequent content
adheres to the condition of T − t = 1. This does not represent a limit but instead reflects
non-life insurance contracts or catastrophe and cyber bonds, which are issued for a fixed term
without adjustments during the period.

2.4 Alternative models and limits

To facilitate a comparison with the newly proposed option model OM, a standard model
from expected value theory and an extension by Zanjani (2002) is presented. To maintain
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simplicity, no risk free discounting is applied. In standard model, the premium is defined as
the expected loss plus frictional costs:

P = (1 + τ)E[L̄]. (SM)

Zanjani (2002) introduce an extension to the standard model, focusing on the deter-
mination of (catastrophic) risk premiums. In his work, Zanjani highlights three primary
considerations. Firstly, insurers may default due to heavy-tailed losses. Secondly, the cost
associated with holding equity capital must be covered by premiums. Lastly, customers care
about the insurer’s risk of insolvency. According to Braun et al. (2023), the model can be
summarized as follows:

P = E[L̄]− E[D] + c. (ZM)

Here, D denotes the difference between the expected payout and the realized payout in the
event of insolvency:

D = max[L̄− Ȳ1, 0].

Since the default factor D also contains the premium, the model ZM does not have a closed-
form solution. The cost of equity, denoted by c, is expressed as:

c = (τ + rrisk)S0.

Here, rrisk signifies a risk premium determined by the correlation between loss and the capital
market. This correlation is often assumed to be zero or close to zero for general insurance
betas (e.g., Cummins and Harrington, 1985; Froot et al., 1995; Zanjani, 2002). Amidst the
Covid-19 crisis, scholars have begun to recalibrate this term. Currently, there is no definitive
evidence regarding the specific nature of this factor. It remains unclear whether it follows
a linear pattern, e.g., Gründl et al. (2021), or exhibits concavity concerning the amount of
risk, e.g., Braun et al. (2023). Furthermore, suitable models for parameter estimation have
yet to be established. Therefore, either factor models or consumption-based approaches are
used (e.g., Braun et al., 2019a; Braun et al., 2019b).

Both alternative pricing models rely on first-order terms. In contrast, the new OM model
not only incorporates first-order terms but also identifies second-order terms as significant
price drivers. Notably, terms related to the market environment are absent in the alternative
models. While both models overlook market and loss uncertainties, the benchmark model also
fails to consider any insolvency risks. Conversely, model ZM focuses solely on the insolvency
risk for policyholders, without addressing the corresponding risk for shareholders.9

All pricing models should produce identical outcomes when jump risks, insolvency risks,
and other frictions are removed. In such scenarios, the premium should correspond to the
expected loss. This market is distinguished by either an infinite amount of equity or no
variance.

9To adequately account for these factors, they would need to be encompassed within rrisk to prevent their
neglect. However, this is not included in the definition of the factor.
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Lemma 1. Under the assumptions of a frictionless market without insolvency and jump risk,
it is necessary for all models to satisfy:

lim
S0→∞

P = E[L̄], and lim
σ→0

P = E[L̄].

Proof. See Appendix A.3.

With Lemma 1 established, the models exhibit convergence in a frictionless market with-
out insolvency and jump risks. Additionally, OM model demonstrates its capability to incor-
porate non-linear insolvency risks and jump risks into pricing within market contexts.

Lemma 2. In a frictionless market without insolvency risk but with a positive probability
of jump occurrences, the influence of jump risk is negligible, and consequently, it remains
unpriced. The premium equals the expected loss:

lim
S0→∞

P = E[L̄].

Proof. See Appendix A.3.

With model ZM as defined here, the insurability of correlated jump risks is not possible in
an insolvency-free market context. In the presence of correlated jump risks where rrisk > 0,
it follows that if S0 tends towards infinity, P also tends towards infinity. This underlines the
limits of a linear and constant factor approach when it comes to jump risks.

Despite the two alternative models presented here, there are also other possibilities. In the
context of pricing cat bonds there are already contingent claim models that use compounded
Poisson processes, such as models Lee and Yu (2002) or Ma and Ma (2013). However, the OM
model presented here differs in three key aspects: First, it is applicable across all four risk
classes, not just limited to cat bonds. Second, it provides a closed-form or straight-forward
calculation, making it more practical and accessible. Third, it specifically prices the jump
risk, rather than operating within the framework established by Merton (1976).

3 Premiums in the market

To validate the efficacy of the new OM model, its performance is demonstrated across all four
risk categories and compared with existing models. This evaluation illustrates the model’s
enhanced capability in handling previously assessed risks. Subsequently, the model is applied
to unique cyber risk data, showcasing that it can price risks that were not feasible with
older approaches. The focus of this section is clearly on the cat and cyber bond market,
the other risk categories complete the big picture of the wide range of applications. The
demonstration underscores the OM model’s broader applicability and improved performance
in contemporary risk assessment.
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3.1 Locally insurable risk

The shareholders’ return is contingent upon the performance of the S&P 500 index. Ac-
cording to Morningstar (2023), the annual total return over the past decade has averaged
approximately 9%, with a standard deviation of 15%. The assessment of locally insurable
risk relies on U.S. indemnity losses, as documented in Frees and Valdez (1998). The dataset
comprises 1,500 general liability claims, each representing indemnity payments in USD. For
scaling purposes, the data is divided by 1,000, thus TUSD (thousands of USD) is used. This
claims dataset is accessible through the R packages copula and evd. The expected loss per
claim is 41.21 TUSD, with a standard deviation of 102.75 TUSD.

Figure 2 provides an overview of the premium relative to the expected loss for models SM,
ZM and OM, (a) without frictions and (b) with frictions of τ = 0.05. Since general insurance-
related betas are close to zero, rrisk = 0 for the ZM model (Cummins and Harrington, 1985).

In the frictionless scenario, the premium of the SM model remains constant at 1. This
outcome is anticipated, as insolvency risk and the market environment are not factored.
Model ZM consistently exhibits the lowest premium since it only considers the insolvency
risk for the policyholder, excluding risk for the shareholder. The OM model positions itself
between the other two models. The latter two models reflect the expected framework: the
lower the insolvency risk, the higher the risk premium, and they also demonstrate the in
lemma 1 anticipated convergence towards the expected value. When frictions are included,
the premium of the SM model increases but remains constant. The relationship between
model ZM and OM also remains consistent. However, due to the frictions, both models
no longer converge towards the expected value but instead increase exponentially. This
exponential increase is attributed to the substantial equity required, as the frictions in the
models are linear in equity, and the amount of equity needed to cover 1% of the tail does not
grow linearly.

(a) Market with no frictons. (b) Changing loss volatility.

Figure 1: Market with τ = 0.05.

Figure 2: Premium for different models and market scenarios.

Figure 3 provides an overview of the risk premium for (a) various market volatilities
and (b) different loss volatilities. The risk premium is calculated as the premium of model
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OM minus the expected loss, adjusted for insolvency risk, using the truncated cumulative
distribution function. As market volatility decreases, the risk premium increases because
shareholders seek to invest their equity more securely, leading to higher premiums for pol-
icyholders seeking increased security. Conversely, when loss volatility increases, the risk
premium also rises. Higher loss volatility implies greater uncertainty and insolvency risk
for shareholders, who then demand a higher risk premium to compensate for the increased
uncertainty.

(a) Changing market volatility. (b) Changing loss volatility.

Figure 3: Risk premium for different market and loss volatilities.

Hence, the model presented reflects the price dynamics for locally insurable risks that
are prevalent in the insurance markets. Firstly, the assessment of payment default risk is of
importance for policyholders. Secondly, the pricing mechanisms in the insurance markets are
influenced in particular by insolvency risk and frictional costs. Thirdly, the risk premium is
subject to the dynamic interplay of market volatility, loss uncertainty, and insolvency risk.
Accordingly, the new OM model not only addresses jump risks, as will be demonstrated later,
but also highlights the significance of incorporating higher orders to accurately reflect market
conditions, for example, whether they are soft or hard.

3.2 Globally insurable risk

Data from Grinsted et al. (2019) encompasses the majority of United States hurricanes dating
back to the early 20th century. In this section, extreme events are omitted, excluding the
10% of the most potent hurricanes (see Braun et al., 2023). Given the vulnerability of Texas
and North Carolina to hurricanes and the absence of historical data indicating a hurricane
simultaneously impacting both states (uncorrelated risk), these two states are used for the
analysis. Following the data, Texas exhibits an expected annual hurricane loss of USD 1,685
million with a standard deviation 2.68 times the mean. North Carolina’s expected annual
hurricane loss amounts to USD 1,533 million with a standard deviation of 3.34 times the
mean. The combined portfolio of hurricane losses for both states have an annual loss of USD
3,218 million with a standard deviation of 2.05 times the mean.

Two scenarios are used for comparison: one where the respective portfolios are insured
locally, and another where a reinsurer covers the combined portfolio, thereby diversifying the
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associated risks. Figure 4 shows the equity needed for the respective (re)insurer to underwrite
the risk. The reinsurer exhibits the highest capital requirement but concurrently manages the
largest policy volume. When aggregating the capital requirements of local insurers, the rein-
surer consistently demonstrates lower capital requirements for the same portfolio and same
insolvency risk, where this effect becomes stronger with more tail risk. This phenomenon
is due to the global diversification of reinsurance and underlines a fundamental aspect of
reinsurance, namely the improved efficiency of risk diversification through an increased cap-
ital base. This observation is shown by Figure 5. By minimizing the portfolio variance,
the reinsurer can charge a lower risk premium, which benefits the policyholder. However,
this advantage diminishes if a hurricane affects both Texas and North Carolina, as the risk
becomes correlated.

The SM model does not consider diversification (expected values are additive). The ZM
model addresses this through the default variable D, as the default probability is influenced
by the cumulative distribution function. Additionally, like the OM model, total frictional
costs decrease with less equity.

Figure 4: Equity for various local and global portfolios.

Figure 5: Risk premium for various local and global portfolios.

14



3.3 Globally diversifiable risk

Globally diversifiable risk refers to the type of risk that is primarily covered by the capi-
tal market due to the amount of capital required which cannot be adequately provided by
(re)insurers alone. This transfer of risk to the capital market typically involves the issuance
of a cat bond. Shareholders of the bond pay a principal amount N to a trust account at
time t = 0. In return, at time t = 1, they receive the risk-free rate earned from the trust
account, a coupon payment C, and the principal, and need to pay the incurred losses (and
any additional expenses). Therefore, the terminal cash flow for the shareholder is given by:

Ȳ1 = (1 + rf )N + C,

whereby H̄1 and T̄1 remain the same. To ensure that the initial cash flow for shareholders
remains consistent throughout the model, the initial cash flow is:

Y0 = N = S0 +
C

1 + ω
.

Here, ω represents a risk-adjusted discount rate, and P = C
1+ω

denotes the present value
premium paid by the policyholder (Braun et al., 2023).

Cat bonds typically have an attachment point beyond which they are activated. In this
context, the trigger is set at the 90% quantile of annual hurricane losses, meaning that
only losses exceeding USD 64,503 million are covered. Losses below this threshold remain
within the insurance market or are borne by policyholders. Consequently, the insurance
market anticipates an expected annual hurricane loss of USD 15,966 million, with a standard
deviation approximately 1.32 times the mean. The cat bond is assumed to cover losses up to a
maximum of USD 103,373 million, corresponding to the 95% quantile. If a hurricane triggers
the cat bond, the expected loss, amounting to USD 26,949 million, falls into the capital
market. This segment carries an expected annual hurricane loss with a standard deviation of
around 0.53 times the expected value. The probability of such an event occurring is estimated
at 10%. The hurricane data is retrieved from Grinsted et al. (2019).

The investment market is represented by the S&P 500, with the same assumptions as
in the previous section. Based on historical market shocks from MFS (2023), it is assumed
that a market crash occurs every 10 years with an average decline of 43.11% and a standard
deviation of 0.34 times the expected value. Additionally, recent research found a frictional
rate of 4.5% for cat bonds (Braun et al., 2023).

To compare Model OM with Model ZM, rrisk must be estimated. The latest estimate
from Braun et al. (2023) is used, which employs the five-factor model from Fama and French
(1993). Despite recent research to determine the factors for the risk premium of the cat bond
market, there is still no widely accepted model (e.g., Braun et al., 2024). Firstly, data for
cat bond indices has only been available for around 20 years, and secondly, it is difficult to
represent the rare downside risks in a factor.

Three scenarios for the cat bond and the multiple of the bond, i.e., how many times the
initial modeled expected loss investors receive in terms of the coupon, are examined (see Table
1). If the multiple equals 1, it indicates a coupon without a risk premium. A comparison
with the SM model is unnecessary here, as it does not include any of the dynamics and would
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be constant at 1. In Scenario 1, the probability of the jump in loss is positive, the capital
market has no jump risk, and there are no frictions. In this case, the multiple from model OM
is approximately 1.07, indicating a market risk premium of 7% of the expected loss. If the
capital market also has a risk of a crash, the market risk premium falls to around 2%. This is
consistent with previous results showing that the more volatile the market, the lower the risk
premium. Scenarios 1 and 2 are identical in the ZM model, as it does not include a market
environment, and has a multiple of 1.0766. This proximity to Scenario 1 of the OM model is
no coincidence and validates this model. The estimated jump risks have comparatively low
volatility (small second order), there is no market environment taken into account, and the
market and the risk are uncorrelated, which also underlines the comparatively small rrisk.
Accordingly, it is to be expected that both models estimate a small risk premium. Since
the ZM model cannot assess the market jump risk, it overestimates the risk premium at this
point. In the last scenario, frictional costs are added, and the market risk premium rises to
58% for the OM model and to 76% for the ZM model. This aligns with previous research
indicating that frictional costs account for a large part of the premium for extreme risks (e.g.,
Braun et al., 2019a; Braun et al., 2023). The higher risk premium of the ZM model can be
explained by its linearity.

According to Artemis (2024b), the average multiple for the cat bond market for Q2 2024 is
4, meaning the risk premium is 300% of the expected loss. However, the market risk premium
calculated here with the OM model is only around 57%. Assuming that the underlying cat
bond is priced consistently with the market, a probability distortion can be assumed. As
described in Gao et al. (2019), this distortion is a tail risk concern, which reflects investors’
subjective ex-ante beliefs about tail risk. The parameters of the measure transformation
must be calibrated accordingly.

In Scenario 4, the unique measure Q is calibrated. The ZM model alone cannot estimate a
measure transformation. Accordingly, another model would first have to be used to determine
the measure Q. For comparability, the measure transformation estimated with the OM model
is used here. The ZM model is unable to reflect the market price accurately due to its reliance
on pure expected value structure, without accounting for jump risks and higher orders. In
addition to the measure Q, the estimation of the factor rrisk would also need to be different.
However, this is challenging for linear factor models due to low correlations and rare downside
risks. This reveals a disadvantage of the ZM model, which requires an additional factor or
consumption-based model, 20 years of time series data, and a third model to measure Q,
whereas the OM model incorporates all these elements and does not require large time series
data.

In the last scenario, Scenario 5, the frictional cost is removed for both models, for example
through government support for the development of the cat bond market, under the measure
Q. A reduction in frictional costs can significantly reduce the risk premium, but it is still
above the estimates with the P measure. Accordingly, the probability distortion of investors
is another major cost driver, which was estimated here unique using the market calibration.
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Estimates Cat bond multiple
Scenario Measure OM ZM OM ZM

1 P λ2 = 0.1 rrisk = 0.005 1.0689 1.0766

2 P λ1 = λ2 = 0.1 rrisk = 0.005 1.0201 1.0766

3 P λ1 = λ2 = 0.1 rrisk = 0.005
1.5783 1.7622

τ = 0.045 τ = 0.045

4 Q
λ1 = λ2 = 0.1

rrisk = 0.005
4 2.5557τ = 0.045

β2 = −0.402
τ = 0.045

5 Q λ1 = λ2 = 0.1
rrisk = 0.005 2.8781 1.1556

β2 = −0.402

Table 1: Multiples for the cat bond without and with measure transformation, estimated
with OM and ZM.

3.4 Globally undiversifiable risk

Based on the calibrations presented in the previous section, the pricing of a pandemic bond
reveals that it is prohibitively expensive compared to other risk classes, making it difficult to
transfer to the capital market without adjustments such as government support (e.g., Braun
et al., 2023). It is important to note that, to date, no such instrument as a pandemic bond
exists.

The analysis assumes a pandemic occurs twice per century, as evidenced by the Spanish
flu and Covid-19 (Centers for Disease Control and Prevention, 2023). The S&P 500 serves
as the underlying market, with the jump size derived from previous calibrations. Business
interruptions, a component of property insurance contracts (APICA, 2020), are considered as
losses caused by the pandemic, using the losses from the previous chapter as the baseline. To
ensure comparability with cat bond, the same jump size is assumed. This involves adopting
a lower limit for the jump process, recognizing that, in reality, undiversifiable jumps are
significantly larger (e.g., APICA, 2020). Consequently, the jump probabilities are reduced,
but the jump itself is included as a joint process with correlated jump sizes. A factor model
approach to estimate rrisk is unsuitable due to the lack of a calibration market. Instead, a
consumption-based approach can be utilized to capture the rare downside risk (e.g., Braun
et al., 2019b). The most recent estimate from Braun et al. (2023), based on the Covid-19
pandemic, is used once again.

Table 2 displays the multiple for the pandemic bond. In Scenario 1, the joint jump is
considered. Compared to the cat bond estimate, the multiple more than triples under the OM
model, despite the probability of occurrence being only one-fifth. Due to the linear risk cost
assumption of the ZM model and the high equity required, this model reaches a multiple of 16
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under the P measure. Including frictional costs doubles the multiple for the OM model and
increases it by approximately 20% for the ZM model. Although the tail risk, and therefore
the ex-ante investor behavior, is likely to differ for pandemics than for natural disasters , due
to limited data, it is assumed that the probability distortion is identical to the estimated cat
bond distortion. Scenario 3 demonstrates that the resulting market risk premium is more
than 16 times the expected loss. For comparison, the largest historical market multiple was
7.5 at the inception of cat bonds in 2001 (Artemis, 2024b). When considering the Q measure
for the ZM, the multiple exceeds 43. This leads to the conclusion that, given the current
market conditions, transferring pandemic risks through the capital market is not feasible
(e.g., Gründl et al., 2021). Potential interventions could include reducing frictional costs; in
Scenario 4, assuming no frictional costs, the multiple decreases to less than 11 for the OM and
35.5 for the ZM model. While a market risk premium of just under 1000% of the expected loss
remains very high, it represents a significant reduction. However, it is important to note that
a lower limit for the jump size was used here. If the jump size increases, the relative multiple
may remain stable, but the absolute values become unaffordable. Additionally, the correlation
of jump sizes was omitted. Since only extreme events with comparably low variance that
occur together due to the Poisson process are considered, correlation has minimal impact
on the multiple here. However, it is evident that linear models and previous asset pricing
models, such as the consumption model, are unsuitable for measuring this type of extreme
risk. As discussed in Braun et al. (2023), this risk should also follow a concave rather than
a linear pattern.

In summary, the new pricing model reflects the essential relationships between risk and
the market, a component missing in previous models. It can calculate market risk premiums
based on the market environment, accommodating both hard and soft market conditions.
Additionally, it can price jump risks, whether independent or joint, which is challenging for
previous models due to the lack of suitable factor models and sufficient data to estimate
the risk of heavy-tailed distributions. Furthermore, the OM model can measure an ex-ante
investor attitude and thus calibrate a unique Q measure. With appropriate calibration,
the market’s risk appetite can be determined by entity and risk, as discussed in the next
section. Beyond the scenarios considered here, many other combinations are conceivable.
For instance, integrating market risk with jump risks into locally and globally insurable risks
could further enhance the model’s realism.
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Estimates Pandemic bond multiple
Scenario Measure OM ZM OM ZM

1 P λ = 0.02 rrisk = 0.206 3.8122 16.1562

2 P λ = 0.02 rrisk = 0.206
6.6439 19.4670

τ = 0.045 τ = 0.045

3 Q
λ = 0.02

rrisk = 0.206
17.2916 43.1152τ = 0.045

γ2 = −0.402
τ = 0.045

4 Q λ = 0.02
rrisk = 0.206 10.8625 35.5646

γ2 = −0.4026

Table 2: Multiples for a fictive pandemic bond without and with measure transformation,
estimated with OM and ZM.

3.5 Investors probability distortion

The next step in this analysis aims to understand the risk tolerance of specific market par-
ticipants concerning natural catastrophe (NatCat) and cyber risks. For NatCat events, the
calibration utilizes hurricane data from Grinsted et al. (2019). The analysis of cyber risk is
based on a dataset obtained from a leading risk modeling agent and based on a loss portfo-
lio from an global reinsurer, which represents the worldwide cyber risk market. Using this
dataset, the risk modeling agent generated 10,000 losses, ranging from daily incidents to
extreme events. Further details about the dataset are available in Kasper et al. (2024). To
simplify the analysis, we assume there is no jump risk in the market and no frictions are
present.

The goal is to assess the stability of the measure transformation in relation to individual
market participants. While the previous chapter demonstrated how to calibrate a probability
distortion based on market data, this section focuses on the sensitivity of this measure in
the context of emerging risks, specifically NatCat and cyber risks. The analysis considers
three market participants: (1) SwissRe, which issued a catastrophe bond and a cyber bond
one year apart, (2) Chubb, and (3) Beazley, which has issued several cyber bonds with
varying characteristics within a short timeframe. The study focuses on bonds for which a
complete data set is available, as provided by Artemis (2024a) (see Table 3). Furthermore,
the application of the new model and initial findings are presented here. A more in-depth
analysis is part of the future research
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Bond Date of issue Type Cedent
Attachment Expected

Spread Multiple
point loss

1 Jun 2022 US named storm Swiss Re 3.82% 3.31% 9% 2.7190

2 Dec 2023 Cyber Swiss Re 2.228% 1.721% 12% 6.9727

3 Dec 2023 Cyber Chubb 2.142% 1.387% 9.25% 6.6691

4 Dec 2023 Cyber Beazley 1.71% 1.26% 13% 10.3175

Table 3: Target bonds

Each bond is calibrated using the loss distributions and its specific properties. Table
4 presents the calibration results, including key metrics such as the proportional jump size,
standard deviation, and the attachment and end quantiles of the bond. The final column lists
the β2 parameter, which defines the transformation specific to each bond. The distribution of
the jumps and quantiles are calibrated based on the attachment point and the expected loss
ratio, and the resulting β2 based on the multiple and resulting in a unique transformation
process.

Bond
Prop. std. dev. Attachment End

β2jump size of the jump quantile quantile

1 9.15 3.39 96.18% 99.06% -0.2243

2 7.72 5.09 97.772% 99.617% -0.7697

3 8.31 5.47 97.858% 99.697% -0.7681

4 9.18 5.91 98.29% 99.699% -0.9392

Table 4: Calibration output

The analysis indicates that each bond exhibits distinct characteristics in terms of jump
sizes and coverage. For instance, NatCat bond (1) has a relatively large jump but a compar-
atively low standard deviation and tail coverage, resulting in the lowest concern for tail risk.
Bonds (2) and (3), while slightly different, are most similar in their attachment points, ex-
pected losses, and multiples. Consequently, their calibrations show similar distributions and
comparable probability distortions. This suggests that the measure Q may be less influenced
by the cedent and instead uniquely reflects similar risks. Bond (4), which has the highest
attachment point and covers the largest tail risk, shows the highest concern for tail risk.

In summary, the comparison of these four bonds demonstrates the varying levels of market
participation and tail coverage for different risk types. It provides initial evidence that similar
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coverage of similar risks leads to a unique probability distortion that is independent of the
cedent. Unlike the classic bond market, where the cedent significantly influences the spread,
cat bonds and cyber bonds are fully covered and have no default risk. This finding suggests
that the spread in this market primarily depends on the tail risk concerns of investors, leading
to a homogeneous risk profile uniquely determined by Q. Generally, it can be observed that
higher tail coverage and standard deviation are associated with greater distortion, while jump
size and attachment point have less influence. This analysis suggests that the OM model can
be utilized not only for pricing but also for comparing market participants and assessing risk
appetite, highlighting initial findings regarding the uniqueness of the risks covered.

3.6 Limitation and further research

A limitation of the OM model is its assumptions regarding distributions. In traditional in-
surance practices, it is often assumed that claims follow a lognormal distribution (e.g., Eling,
2012). However, the distribution of jump risks remains uncertain. Current approaches pre-
dominantly rely on expected value theory, assuming that Peaks over Threshold (POT) events
follow a Generalized Pareto Distribution (GPD). The challenge is the lack of a universally
accepted model for identifying POT events, the absence of an inherent upper limit to POT
losses and the finite nature of the moments (McNeil et al., 2015). Insurance contracts and
catastrophe bonds introduce constraints by imposing limits on payouts, necessitating the use
of truncated distributions. For instance, Kasper et al. (2024) demonstrate that almost no
“extreme tail” risk is covered in the cyber risk market. This raises the question of whether
truncation favors the here chosen distributions as a potentially more suitable or at least ac-
ceptable choice (e.g., Ma and Ma, 2013), considering the model’s other advantages, as similar
processes are widely used for the catastrophic market (e.g., Lee and Yu, 2002; Jaimungal and
Wang, 2006). This question presents an opportunity for future research. Furthermore, an
option model can be developed that enhances reliance on extreme value theory and adjusts
the distribution of jump risks within the GPD framework.

Another area for future research should focus on Section 3.5, examining more closely the
uniqueness of Q. This paper has already provided initial evidence that investors primarily
define the spread based on tail risk concerns. However, since the primary focus here is on
introducing the new model, this analysis should be expanded. In particular, a comparison
between catastrophe bonds and cyber bonds could be made. This would require a similar
data basis for NatCat events as for cyber events, possibly provided by a risk modeling agent,
and more detailed information on the latest cyber bonds. Nevertheless, the model derived in
this paper can be used for this comparison, as alternative models, such as those relying on
time series data, are not applicable, e.g., due to the lack of time series data for cyber events.

4 Conclusion

This paper addresses the evolving landscape of risk management by proposing a novel model
for pricing extreme risks, particularly in the context of insurance-linked securities such as
catastrophe and cyber bonds. Given the increasing importance of jump risks and their cor-
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relation with macroeconomic fundamentals, particularly highlighted by events such as the
Covid-19 pandemic, the need for more accurate pricing models is evident. The model pre-
sented in this paper not only updates existing risk categories but also integrates key market
factors, correlation structures, and jump risks into a consistent framework. This approach
deviates from traditional factor or consumption models, offering a more comprehensive un-
derstanding of risk premiums in the cat bond market. By incorporating real-world data and
calibrating parameters accordingly, the paper provides a practical application of the model,
demonstrating its effectiveness in pricing not only insurable risk but also cat bonds and cy-
ber bonds. The findings suggest that the spread in these markets is primarily driven by
investors’ concerns about tail risk, as captured by the unique measure Q, offering a more
nuanced view than traditional models. This study contributes to the literature by providing
a robust framework that accounts for higher-order risks and market frictions, paving the way
for more precise risk assessment and management in the future.
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A Appendix

A.1 Measure changes using the Esscher transformation

Define an asset as:

St = S0 exp(Xt),

whereXtt ≥ 0 is a stochastic process characterized by stationary and independent increments,
and X0 = 0. Furthermore, let:

FXt(x) = P(Xt ≤ x)

be the cumulative distribution function, and:

MP,Xt(u) = E[exp(uXt)]

represent the moment-generating function of the random variable Xt under the measure P.
Thus:

MP,Xt(u) =

∫ ∞

−∞
exp(ux)f(x, t)dx,

where f(x, t) is the continuous density of Xt.
10 Building upon the transformation proposed

by Esscher (1932), a transformed density for Xt is:

f(x, t, h) =
exp(hx)f(x, t)∫∞

−∞ exp(hy)f(y, t)dy

=
exp(hx)f(x, t)

MP,Xt(h)

where h is the transformation parameter. The corresponding moment-generating function is
given by:

MQ,Xt(u) =

∫ ∞

−∞
exp(ux)f(x, t, h)dx

=
MP,Xt(u+ h)

MP,Xt(u)
.

Subsequently, the Esscher transformation is derived for the three significant processes in
this study. The analytical findings align with prior literature, exemplified by works such as
Gerber and Shiu (1994) and Runggaldier (2003), where, for instance, Runggaldier transforms
these measures utilizing the Radon-Nikodym theorem. In the provided examples, the time
component is disregarded, as it is not needed in this context.

10For a discrete distribution, the integral can be replaced by a sum.
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Normal distribution: Assuming Xt = Yt, where Yt is a normally distributed random
variable with a mean of µ and a variance of σ2. The moment-generating function is expressed
as:

MP,Xt(u) = exp(uµ+
1

2
σ2u2).

Through the Esscher transformation, the resulting expression for the moment-generating
function under the new measure Q is:

MQ,Xt(u) = exp
(
u(µ+ hσ2) +

1

2
σ2u2

)
.

Consequently, the new mean under Q can be defined as µ̃ = µ + hσ2. The transformed
normal distribution under Q remains a normal distribution with mean µ̃ variance σ2.

Proof.

MP,Xt(u+ h)

MP,Xt(u)
=

exp
(
(u+ h)µ+ 1

2
σ2(u+ h)2

)
exp(uµ+ 1

2
σ2u2)

= exp
(
(u+ h)µ+

1

2
σ2(u+ h)2 − (uµ+

1

2
σ2u2)

)
= exp

(
(hµ+

1

2
σ2h2 + σ2uh

)
= exp

(
(h(µ+ σ2u) +

1

2
σ2h2

)

Poisson distribution: Assume Xt = kNt, where Nt is a Poisson process with intensity λ,
and k is a constant. The moment-generating function is defined as:

MP,Xt(u) = exp
(
λ(exp(ku)− 1)

)
Through the Esscher transformation, the resulting expression for the moment-generating
function under the new measure Q is:

MQ,Xt(u) = exp
(
λ exp(hk)(exp(ku)− 1)

)
Consequently, the intensity under Q can be defined as λ̃ = λ exp(hk). The transformed
Poisson process under Q remains a Poisson process with intensity λ̃.

Proof.

MP,Xt(u+ h)

MP,Xt(u)
=

exp
(
λ(exp(k(u+ h))− 1)

)
exp

(
λ(exp(ku)− 1)

)
= exp

(
λ(exp(k(u+ h))− 1)− λ(exp(ku)− 1)

)
= exp

(
λ(exp(ku) exp(kh))− λ exp(ku)

)
= exp

(
λ exp(ku)(exp(kh)− 1)

)
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Compounded Poisson process: Assume a compounded Poisson process Xt =
∑Nt

i=1 Yt,
where Nt is a Poisson process with intensity λ, and Yt represents a normally distributed jump
size with mean µ and variance σ2. The moment-generating function is defined as:

MP,Xt(u) = E[exp(u
Nt∑
i=1

Yi)]

= exp
(
λ(MP,Yt(u)− 1)

)
Through the Esscher transformation, the resulting expression for the moment-generating
function under the new measure Q is:

MQ,Xt(u) = exp
(
λMP,Yt(h)(MQ,Yt(u)− 1)

)
Consequently, the intensity under Q can be defined as λ̃ = λMP,Yt(h), and the new mean of
the jump size under Q can be defined as µ̃ = µ+hσ2. The transformed compounded Poisson
process under Q remains a compounded Poisson process with intensity λ̃ and mean jump
size µ̃ and variance σ2.

Proof.

MP,Xt(u+ h)

MP,Xt(u)
=

exp
(
λ(MP,Yt(u+ h)− 1)

)
exp

(
λ(MP,Yt(u)− 1)

)
= exp

(
λ(MP,Yt(u+ h)− 1)− λ(MP,Yt(u)− 1)

)
Given the moment-generating function of a normally distributed random variable, one ob-
tains:

MP,Yt(u+ h) = exp
(
(u+ h)µ+

1

2
σ2(u+ h)2

)
= exp

(
uµ+ hµ+

1

2
σ2u2 +

1

2
σ2h2 + σ2uh

)
= exp

(
uµ+

1

2
σ2u2 + h(µ+ σ2u) +

1

2
σ2h2

)
= MP,Yt(u)MQ,Yt(h)

Therefore:

MP,Xt(u+ h)

MP,Xt(u)
= exp

(
λ(MP,Yt(u)MQ,Yt(h)− 1)− λ(MP,Yt(u)− 1)

)
= exp

(
λMP,Yt(u)MQ,Yt(h)− λMP,Yt(u)

)
= exp

(
λMP,Yt(u)(MQ,Yt(h)− 1)

)
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A.2 Influence of dividends on premiums

Following Cheang and Chiarella (2011), both assets may yield a dividend return denoted as
ξi, i ∈ {1, 2}. In the context of this study, wherein S2 represents the loss, dividend payments
do not apply to this asset, resulting in ξ1 ≥ 0 and ξ2 = 0. Consequently, the formulation
of the option price for the exchange of the two assets, accounting for dividends, can be
formulated as:

C(S1, S2) =
∑
k

∑
m

∑
n

exp
(
− (λ̃1 + λ̃2 + λ̃)

)(λ̃1)
k

k!

(λ̃2)
m

m!

(λ̃)n

n!

×

[
S1 exp

(
− (ξ1 + λ̃1κ̃Z1 + λ̃κ̃1) + kα̃11 +

kδ211
2

+ nα̃1 +
nδ21
2

)
Φ(d1,t,k,m,n)

−S2 exp
(
− (λ̃2κ̃Z2 + λ̃κ̃2) +mα̃22 +

mδ222
2

+ nα̃2 +
nδ22
2

)
Φ(d2,t,k,m,n)

]
where:

d1,t,k,m,n =
ln(S1

S2
) + (−λ̃(κ̃1 − κ̃2)− λ̃1κ̃Z1 + λ̃2κ̃Z2 − ξ1) + µk,m,n +

σ2
k,m,n

2

σk,m,n

√
T − t

.

The other terms remain unchanged.

Given the indemnity losses in the US from the example in Section 3.1. The dividend yield
of the S&P 500 index was at the end of 2022 by 1.78%, whereas historical dividend yields
for the S&P 500 index have typically ranged from between 3% to 5% (Ross, 2023). Figure 6
illustrates the premium differences between dividends and no dividends. The pattern resem-
bles that seen with frictional costs. This suggests that dividends in alternative investments
are a price determinant for insurance contract premiums.

Figure 6: Premium for different dividends.

A.3 Proofs

Lemma 1

29



Proof. In the benchmark model, the proof is straightforward. In the extension, given the
absence of insolvency risk, E[D] = 0. Moreover, without friction and jump risk, c = 0.
Hence, P = E[L̄]. In the option model, when jump risk is absent, the following relationships
hold:

Y0Φ(d1)− E[L̄]Φ(d2) =S0

⇔ (S0 + P )Φ(d1)− E[L̄]Φ(d2) =S0

⇔ S0(Φ(d1)− 1) + PΦ(d1)− E[L̄]Φ(d2) =0

It is observed that:

lim
S0→∞

d1 = lim
σ→0

d1 = ∞ and lim
S0→∞

d2 = lim
σ→0

d2 = ∞,

leading to:

lim
S0→∞

Φ(d1) = lim
σ→0

Φ(d1) = 1 and lim
S0→∞

Φ(d2) = lim
σ→0

Φ(d2) = 1.

Consequently, the equation simplifies to:

S0(Φ(d1)− 1) + PΦ(d1)− E[L̄]Φ(d2) =0

⇔ P − E[L̄] =0

⇔ P =E[L̄]

Lemma 2

Proof. In the scenario where σ → 0, uncertainty diminishes, eliminating jump risks. Conse-
quently, the focus lies solely on the case where S0 → ∞. Without loss of generality, k, m
and n can be fixed:

exp
(
− (λ̃1 + λ̃2 + λ̃)

)(λ̃1)
k

k!

(λ̃2)
m

m!

(λ̃)n

n!
=

exp
(
− λ̃1

)(λ̃1)
k

k!
exp

(
− λ̃2

)(λ̃2)
m

m!
exp

(
− λ̃
)(λ̃)n

n!
=

Pλ̃1
(k)Pλ̃2

(m)Pλ̃(n),

given the Poisson distribution of the jump occurrences. From the previous proof it is known
that for S0 → ∞:

Φ(d1, t, k,m, n) = Φ(d2, t, k,m, n) = 1.

30



Thus, the option formula can be expressed as:

C(Y1(P ), L̄) =
∑
k

∑
m

∑
n

Pλ̃1
(k)Pλ̃2

(m)Pλ̃(n)

×

[
Y0 exp

(
− (λ̃1κ̃Z1 + λ̃κ̃1) + kα̃11 +

kδ211
2

+ nα̃1 +
nδ21
2

)
− E[L̄] exp

(
− (λ̃2κ̃Z2 + λ̃κ̃2) +mα̃22 +

mδ222
2

+ nα̃2 +
nδ22
2

)]
Moreover:

exp(kα̃11 +
kδ211
2

) = E[exp(kZ1]

exp(mα̃22 +
mδ222
2

) = E[exp(mZ2)]

exp(nα̃1 +
nδ21
2

) = E[exp(nY1)]

exp(nα̃2 +
nδ22
2

) = E[exp(nY2)],

and defining
∑

k,m,n Pλ̃1,λ̃2,λ̃
(k,m, n) =

∑
k

∑
m

∑
n Pλ̃1

(k)Pλ̃2
(m)Pλ̃(n):

C(Y1(P ), L̄) =
∑
k,m,n

Pλ̃1,λ̃2,λ̃
(k,m, n)

[
Y0 exp

(
− (λ̃1κ̃Z1 + λ̃κ̃1)

)
E[exp(kZ1)]E[exp(nY1)]

− E[L̄] exp
(
− (λ̃2κ̃Z2 + λ̃κ̃2)

)
E[exp(mZ2)]E[exp(nY2)]

]

=

[
Y0 exp

(
− (λ̃1κ̃Z1 + λ̃κ̃1)

) ∑
k,m,n

Pλ̃1,λ̃2,λ̃
(k,m, n)E[exp(kZ1)]E[exp(nY1)]

− E[L̄] exp
(
− (λ̃2κ̃Z2 + λ̃κ̃2)

) ∑
k,m,n

Pλ̃1,λ̃2,λ̃
(k,m, n)E[exp(mZ2)]E[exp(nY2)]

]
The call option must equate to the initial equity, therefore:

C(Y1(P ), L̄) =(S0 + P ) exp
(
− (λ̃1κ̃Z1 + λ̃κ̃1)

) ∑
k,m,n

Pλ̃1,λ̃2,λ̃
(k,m, n)E[exp(kZ1)]E[exp(nY1)]

− E[L̄] exp
(
− (λ̃2κ̃Z2 + λ̃κ̃2)

) ∑
k,m,n

Pλ̃1,λ̃2,λ̃
(k,m, n)E[exp(mZ2)]E[exp(nY2)]

=S0.

For the sake of a simpler overview, let’s define:

J1 =
∑
k,m,n

Pλ̃1,λ̃2,λ̃
(k,m, n)E[exp(kZ1)]E[exp(nY1)]
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and:
J2 =

∑
k,m,n

Pλ̃1,λ̃2,λ̃
(k,m, n)E[exp(mZ2)]E[exp(nY2)]

as a placeholder. Isolating the premium yields to:

P =E[L̄]
exp

(
− (λ̃2κ̃Z2 + λ̃κ̃2)

)
J2

exp
(
− (λ̃1κ̃Z1 + λ̃κ̃1)

)
J1

+ S0

1− exp
(
− (λ̃1κ̃Z1 + λ̃κ̃1)

)
J1

exp
(
− (λ̃1κ̃Z1 + λ̃κ̃1)

)
J1

=E[L̄] exp
(
− (λ̃2κ̃Z2 − λ̃1κ̃Z1 + λ̃(κ̃2 − κ̃1))

)J2
J1

+ S0

1− exp
(
− (λ̃1κ̃Z1 + λ̃κ̃1)

)
J1

exp
(
− (λ̃1κ̃Z1 + λ̃κ̃1)

)
J1

Upon closer examination of J1, its expression can be rephrased. Without loss of generality,
the same restructuring applies to J2 by substituting k and m:

J1 =
∑
k,m,n

Pλ̃1,λ̃2,λ̃
(k,m, n)E[exp(kZ1)]E[exp(nY1)]

=
∑
m

Pλ̃2
(m)︸ ︷︷ ︸

=1

∑
k

Pλ̃1
(k)E[exp(kZ1)]

∑
n

Pλ̃(n)E[exp(nY1)].

Without loss of generality, the focus remains on
∑

k Pλ̃1
(k)E[exp(kZ1)] with this equivalence

extending to other components sharing a similar structure:∑
k

Pλ̃1
(k)E[exp(kZ1)] =

∑
k

Pλ̃1
(k) exp(kα̃11 + k

δ222
2
)

=
∑
k

Pλ̃1
(k) exp(α̃11 +

δ222
2
)k

=
∑
k

Pλ̃1
(k)E[exp(Z1)]

k

=
∑
k

Pλ̃1
(k) exp

(
k ln(E[exp(Z1)])

)
Reflecting on the fact that the moment-generating function of a Poisson-distributed random
variable x is defined as MX(u) = E[exp(uX)] =

∑
n P(X = n) exp(un), this results in:∑

k

Pλ̃1
(k) exp

(
k ln(E[exp(Z1)])

)
= MN1

(
ln(MZ1)

)
= exp(λ̃1(exp

(
ln(E[exp(Z1)])

)
− 1))

= exp(λ̃1

(
E[exp(Z1)]− 1)︸ ︷︷ ︸

κ̃Z1

)

= exp(λ̃1κ̃Z1).
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Summarized, it holds:

J1 = exp(λ̃1κ̃Z1) exp(λ̃κ̃1)

J2 = exp(λ̃2κ̃Z2) exp(λ̃κ̃2)

Therefore, the following applies to the premium:

P =E[L̄] exp
(
− (λ̃2κ̃Z2 − λ̃1κ̃Z1 + λ̃(κ̃2 − κ̃1))

)exp(λ̃2κ̃Z2) exp(λ̃κ̃2)

exp(λ̃1κ̃Z1) exp(λ̃κ̃1)

+ S0

1− exp
(
− (λ̃1κ̃Z1 + λ̃κ̃1)

)
exp(λ̃1κ̃Z1) exp(λ̃κ̃1)

exp
(
− (λ̃1κ̃Z1 + λ̃κ̃1)

)
exp(λ̃1κ̃Z1) exp(λ̃κ̃1)

=E[L̄] exp
(
− (λ̃2κ̃Z2 − λ̃1κ̃Z1 + λ̃(κ̃2 − κ̃1))

)
exp

(
(λ̃2κ̃Z2 − λ̃1κ̃Z1 + λ̃(κ̃2 − κ̃1))

)
+ S0

1− exp
(
− (λ̃1κ̃Z1 + λ̃κ̃1)

)
exp(λ̃1κ̃Z1 + λ̃κ̃1)

exp
(
− (λ̃1κ̃Z1 + λ̃κ̃1)

)
exp(λ̃1κ̃Z1 + λ̃κ̃1)

= E[L̄]
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