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Abstract 

Using 5-minute high-frequency data around the clock, inclusive of trading and non-trading periods, 

this study is the first to comprehensively examine information bias, leverage effects of asymmetric 

innovation shocks, and return- and volatility-connectedness between six major developed equity 

markets – US, UK, France, Germany, Australia, and Japan – and seven leading cryptocurrencies – 

Bitcoin (BTC), Litecoin (LTC), Ethereum (ETH), Dashcoin (DSH), EOS, Basic Attention Token 

(BAT), and Tron (TRX) – between August 5, 2019, and January 31, 2023. We employ different 

GARCH- and VAR-based asymmetric and symmetric econometric tools and study all major recent 

market-stress periods to rigorously guide investors. Using sign bias tests, we find that the leverage 

effect – a stronger impact of negative innovations on the conditional volatility of returns than the 

positive innovations of the same size – in equities (cryptocurrencies) is manifested in the pre-Covid 

(post-Covid) period. Spillovers of asymmetric innovation shocks using SAARCH, TGARCH, and 

APARCH models and volatility- and return-connectedness using the TVP-VAR model are higher in 

the post-Covid period than in the pre-Covid period. Overall, several short-lived, permanent, and 

transformed long-lived net transmitters and receivers of return and volatility shocks are evident during 

the sample period, indicating their time-varying behavior. Notably, Germany and ETH (Germany, UK, 

and TRX) were the main receivers, whereas BAT, EOS, LTC, and BTC (Australia, BAT, and EOS) 

were the main transmitters of volatility shocks in the network during the full sample (post-Covid) 

period. Our findings hold practical importance and guide investors in making hedging decisions, 

exploring diversification opportunities, and optimizing crypto-equity portfolios during different 

economic, geopolitical, and market conditions.  
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1. Introduction  

Volatility in asset returns is not straightforward to examine, and this complex nature of volatility makes 

it hard to test the performance of conditional heteroscedastic models. It is often discussed in the context 

of market fear, indicating its crucial nature; however, despite its noteworthy importance for investors, 

it cannot be detected directly from financial markets. Several empirical studies have revealed that 

volatility reacts differently to different events, market conditions, and the level and direction of price 

changes (e.g., Ali, Sensoy, and Goodell, 2023; Starkey and Tsafack, 2023). Therefore, estimating such 

measures becomes more complex in inter-market and inter-class asset settings. Inter-market linkage is 

an important factor of international finance and imperative for both portfolio managers and 

policymakers in terms of both hedging-related decisions and portfolio optimization. Back-to-back 

turbulences in financial markets, e.g., the global financial crisis 2007-2009 (GFC), Euro debt crisis 

2010-2013 (EDC), Coronavirus disease 2019 (henceforth, Covid-19 and Covid will be alternatively 

used), and the Russia-Ukraine war 2022, have specifically motivated investors and researchers to 

search for assets that provide notable diversification benefits (Ali et al., 2024; Ali, Sensoy, and Goodell, 

2023; Izzeldin et al., 2023; Zhang, He, and Hamori, 2023; Ali et al., 2022; Ali, Jiang, and Sensoy, 

2021; Tiwari et al., 2021; Huynh et al., 2020). However, relevant recent literature shows elevated 

connectedness among financial markets due to several reasons, including the globalization of financial 

markets, economic integration, market openness, and technological advancements (Akhtaruzzaman, 

Boubaker, and Sensoy, 2021; Corbet, Larkin, and Lucey, 2020; Conlon and McGee, 2020). Thus, it is 

understandable that rational investors would prefer to carefully estimate both volatility and its 

spillovers to adequately diversify and protect their investment. In doing so, models that are based on 

GARCH (e.g., Engle, 1982, 1990; Engle and Ng 1993) and VAR (e.g., Diebold and Yilmaz, 2008, 

2012, 2014; Gabauer and Gupta, 2018) are considered the two most effective empirical frameworks in 

estimating innovation shocks, spillover effects, and connectedness among assets. Given that 

knowledge about the leverage effect, spillovers, and connectedness among assets is crucial for 

policymakers and investors, their correct estimations using multiple methods may guide investors and 

policymakers in minimizing the hostile effects of volatility shocks across different financial markets.  

However, a careful examination of the extant literature reveals that nearly all existing studies have at 

least two of the four major limitations: (i) employing low-frequency (daily or weekly) data, which fails 

to uncover information hidden in the high-frequency intra-day data, (ii) examining only one asset-class 

(equities, commodities, or cryptocurrencies only), which fails to pinpoint inter-market hedging and 

diversification opportunities, (iii) overlooking leverage effects of asymmetric innovation shocks, 

which fails to provide the understanding of whether positive and negative news equally affect financial 

assets, or (iv) considering only trading hours or day-end closing price, which suffers from 

instantaneously considering the flow of information and its spillovers. Therefore, this study aims to 

study information bias, asymmetric innovation shocks (so-called leverage effect) and their spillovers, 

and return- and volatility-connectedness within and across equity and cryptocurrency markets using 

high-frequency intra-day data available around the clock, inclusive of trading and non-trading periods. 

For example, while Panda et al. (2021) examined the effect of asymmetric innovation shocks and their 

spillover effects among equity markets, the study was limited to a specific region (Asia-Pacific), one 

asset class (equities-only), and low-frequency (daily) data. Karim et al. (2022) examined the 

asymmetric reaction of conventional and Islamic equities to implied volatility; however, the study was 

similarly limited to one asset class (equities-only) and low-frequency data. Wajdi et al. (2020) and 

Kumar et al. (2022), on the other hand, emphasized spillover dynamics, co-movements, and 



 

 

connectedness among leading cryptocurrencies; nevertheless, it was also an intra-class asset 

examination (cryptocurrencies-only) using low-frequency data. While several recent studies explored 

market co-movements in inter-class asset settings (Ali et al., 2021, 2022; Basher and Sadorsky, 2016; 

Batten et al., 2021; Ghorbel and Jeribi, 2021; Ha and Nham, 2022; Ji, Zhang, and Zhao, 2020; Yildirim, 

Esen, and Ertuğrul, 2022), none of them employed high-frequency data or information bias.  

In the context of employing high-frequency data in an inter-class asset setting, the literature is confined 

to unidirectional analysis, i.e., considering one asset as a key variable of interest and examining its 

comovements with other assets by matching the corresponding trading periods. For instance, Corbet, 

Larkin, and Lucey (2020) employed hourly data to examine the contagion effect at the onset of the 

Covid-19 pandemic between the Chinese stock market and other asset classes (Gold, WTI, Bitcoin, 

and Dow Jones Industrial Average), where the key variable of interest was the Chinese stock market. 

Thus, the results were useful for investors aiming to diversify their investments in the Chinese market. 

It is conceivable that the use of high-frequency data is not straightforward when different assets and 

asset classes traded at different exchanges are concurrently under study. There are at least two possible 

reasons for the lack of empirical evidence in this research direction. First, equity markets in different 

countries and different asset classes are traded on different exchanges using different trading and non-

trading hours. Second, the selection of interval (data frequency) to calculate intra-day returns is crucial 

due to market microstructure frictions (i.e., infrequent trading and synchronous high-frequency). In 

summary, the complication that arises while employing intra-day high-frequency data across different 

international equity markets and other asset classes is most likely to be the main reason for the lack of 

proliferation of research into capturing the information bias, asymmetric innovation shocks and their 

spillover, and connectedness between different asset classes and equity markets using high-frequency 

data. Thus, a comprehensive examination that addresses these concerns and provides rigorous 

empirical findings is the key motivation of this study. More precisely, we are interested in studying the 

impact of asymmetric innovation shocks, information bias, and their spillover effects and return- and 

volatility-connectedness (i) among major equity markets (intra-class asset analysis), (ii) among major 

cryptocurrencies (intra-class class analysis), and (iii) between equities and cryptocurrencies (inter-class 

asset analysis) using high-frequency around the clock intra-day data. 

The cryptocurrency market and its popularity have grown remarkably in recent years, which has made 

cryptocurrencies a new asset class to invest in and induced researchers to study them. The recognition 

and advancement of Spot Bitcoin ETF by the US Security and Exchange Commission (SEC) in January 

2024 is similarly expected to further elevate investment in this asset class. 1  Equities and 

cryptocurrencies are also considered among the most heavily tradable financial assets globally. Recent 

studies have explored the cryptocurrency market in numerous ways; for example, the efficiency of 

cryptocurrencies (Mnif et al., 2020), the connectedness among cryptocurrencies (Charfeddine et al., 

2022; Cui and Maghyereh, 2022; Shahzad, Bouri, Kang, and Saeed, 2021), and the hedge and safe-

haven role of cryptocurrencies for different asset classes (Ali, et al., 2022, 2024; Conlon et al., 2020; 

Corbet et al., 2020) using daily data. Given the recognition of cryptocurrencies as a new asset class 

(Mamun et al. 2021), a desirable asset class that has the potential to generate high returns (Ji et al., 

2019), and a less-correlated market with other traditional assets (Ali et al., 2022; Kumar et al., 2022), 

studying them using high-frequency data will offer new insightful guidance to market participants. In 

doing that, we consider both major equity markets and cryptocurrencies, which account for a 

                                                            
1 See https://www.sec.gov/news/statement/gensler-statement-spot-bitcoin-011023  
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substantially large proportion of the total market capitalization of the global equity markets and crypto 

assets, respectively.  

This study offers contributions in a comprehensive consideration of the growing literature on 

asymmetric innovation shocks and their spillover effects, and connectedness across different financial 

markets and asset classes using high-frequency intra-day data. In doing so, we significantly extend the 

literature on the (i) information bias and leverage effect; sign bias tests to differentiate the effects of 

asymmetric innovation shocks (Karim et al., 2022; Naeem et al., 2022; Wu et al., 2022; Panda et al., 

2021), (ii) spillover of shocks; transmissions of return and volatility shocks from one asset to other 

assets (Wang and Xiao, 2023; Zhang and Xu, 2023; Wu et al., 2022), and (iii) return- and volatility-

connectedness of cryptocurrencies and equity markets in both inter- and intra-class asset settings (Ali 

et al., 2024, 2023; Zhang and Xu, 2023; Charfeddine et al., 2022; Katsiampa, Yarovaya, and Zięba, 

2022). In addition, we contribute to the literature that examines the time-varying behavior of innovation 

shocks, the direction of spillovers, and net transmitters and receivers of shocks in the network and 

potential reasons for such changes over time (Ren et al., 2024; Ali et al., 2023, 2022, Ustaoglu, 2022; 

Vidal-Tomás, 2021; Conlon and McGee, 2020). Most importantly, we are among the first few to 

comprehensively examine asymmetric spillovers and connectedness among major equity markets from 

different regions where trading and non-trading periods substantially differ, and between 

cryptocurrencies and equity markets using round-the-clock intra-day high-frequency data; inclusive of 

trading and non-trading periods. Thus, we substantially extend studies that have employed high-

frequency data but focused only on intra-lass assets (Conlon, Corbet, and McGee, 2024; Chan et al., 

2022; Gradojevic and Tsiakas, 2021), equities from one region or one key asset in an inter-class setting 

(Wu et al., 2022; Corbet, Larkin, and Lucey, 2020), and trading or matching periods (Ji, Zhang, and 

Zhao, 2022; Zhou and Liu, 2023; Khademalomoom and Narayan, 2020; Corbet et al., 2020).  

In order to mitigate the problem of non-synchronous high-frequency trade information across different 

financial markets that may introduce bias into the realized covariance measure of cryptocurrencies and 

equity indices, as discussed earlier, this study employs contracts for the difference (CFD) on equity 

indices and cryptocurrencies. The selected CFDs are premeditated to reflect the best approximation of 

the current cash price by considering the corresponding futures contract with a fair value adjustment. 

The benefits of using CFDs include (i) prolonged trading hours, providing synchronous trade 

information for each asset to accurately examine co-movements and spillovers; (ii) higher liquidity 

and lower barriers to entry than future contracts, given that CFDs are traded directly with brokers; (iii) 

infinite expiration, different from futures, CFDs do not have an expiration date; (iv) quotation 

transparency and uniform platforms provided by Dukascopy for both cryptocurrency and equity indices. 

Thus, this study does not suffer from the asynchronicity problem triggered by employing data from 

multiple dissimilar sources. Furthermore, a synthesis of relevant literature reveals that using 5-60-

minute intervals provides the best trade-off between accuracy and market microstructure frictions 

(Andersen et al., 200; Kuang, 2022; Naeem et al., 2019). Therefore, we select the highest intra-day 

frequency suggested to calculate intra-day returns (He et al., 2023; Wu et al., 2022; Eross et al., 2019), 

i.e., the 5-minute interval. 

The assets we consider are six major developed equity markets from three different regions (North 

America, Europe, and Asia-Pacific) and seven leading cryptocurrencies. The equity markets under 

study are US (S&P500), UK (FTSE100), Germany (DAX), France (CAC40), Australia (S&PASX200), 

and Japan (Nikkei225), whereas the cryptocurrencies under study are Bitcoin (BTC), Litecoin (LTC), 



 

 

Ether (ETH), Dashcoin (DSH), EOS, Basic Attention Token (BAT), and Tron (TRX). Given the 

availability of 5-minute interval data for the selected assets, our sample period spans between August 

5, 2019, and January 31, 2023, covering different market states—bull, bear, turmoil, rebound, stable, 

and super-bull for both equities and cryptocurrencies, indicating the wide-ranging significance of this 

work.  

We employ different econometric tools and study all major recent market-stress periods for both asset 

classes studied, i.e., Bitcoin and other cryptocurrencies flash crashes, Covid-19, and Russia-Ukraine 

war periods, to guide investors and policymakers. Using sign bias tests, we find that the leverage effect 

in equities is manifested only in the pre-Covid period, whereas in cryptocurrencies it is only manifested 

only in the post-Covid period. It indicates that equities (cryptocurrencies) in the pre-Covid (post-Covid) 

period confronted a stronger impact of negative innovations on the conditional volatility of returns than 

the positive innovations of the same size. Further testing indicates that both (i) spillovers of random 

innovation shocks using SAARCH, TGARCH, and APARCH models and (ii) volatility and return 

connectedness using the TVP-VAR approach are higher in the post-Covid period than the pre-Covid 

period. Our results indicate several short-lived, permanent, and transformed long-lived net transmitters 

and receivers of return and volatility. Notably, Germany and ETH (Germany, UK, and TRX) were the 

main receivers, whereas BAT, EOS, LTC, and BTC (Australia, BAT, and EOS) were the main 

transmitters of volatility shocks in the network during the full sample (post-Covid) period. The findings 

of this study hold practical importance regarding hedging-related decisions, diversification 

opportunities, and portfolio optimization strategies during different market, economic, and geopolitical 

conditions. Thus, it may help international investors, fund managers, and researchers to understand 

asymmetries in innovation shocks, their spillovers, and return- and volatility-connectedness across 

different markets and asset classes.  

The remainder of this paper is organized as follows. Section 2 introduces the data employed and 

explains the rationale behind choosing the data and its sources. Section 3 details the econometric 

methods. Section 4 presents the study's preliminary and main results and extends critical discussion. 

Finally, Section 5 provides conclusions, possible implications, and future extensions of this study. 

2. Data and Sources 

Our data consist of six major equity indices, including S&P500 (US), FTSE100 (UK), CAC40 (France), 

DAX (Germany), S&PASX200 (Australia), and Nikkei225 (Japan) and seven cryptocurrencies, 

including BTC, LTC, ETH, DSH, EOS, BAT, and TRX. The selected equity indices represent major 

developed markets from three different regions — North America, Europe, and Asia-Pacific — and 

account for a substantially large proportion of the total global market capitalization of the equity market. 

The selected cryptocurrencies similarly account for a substantially large proportion of the 

cryptocurrency market (capitalization) and are among the highly traded cryptocurrencies. 

Given that cryptocurrencies and international equities are traded on a variety of exchanges during 

different trading hours, the problem of nontrading time and non-synchronous high-frequency are the 

major concerns. For example, regarding standard times and trading hours, on average there is a 5-to-

7-hour difference between the US and selected European countries, a 6-to-8-hour difference between 

the selected European and Asia-Pacific countries, and more than 10-hour difference between the US 

and Asia-Pacific countries. Most likely, it is one of the major reasons that studies employing high-

frequency data often consider only one asset class or more than one asset class where matching trading 



 

 

hours is possible. While the former group of studies does not explore inter-class asset dynamics, the 

latter group of studies does not concurrently examine inter-market dynamics and flow of information. 

In summary, synchronous trade information is critical when using high-frequency data to analyze 

intraday spillover effects and connectedness. In doing that, we use the contracts for the difference 

(CFD) on equities and cryptocurrencies published by the Dukascopy Swiss Banking Group. These 

index-tracking CFDs are designed to reflect the best estimate of the market's current cash price by 

using the corresponding futures contract with a fair value adjustment. Cui and Maghyereh (2022), 

Kuang (2022), and Le et al. (2021), among others, have recently used Dukascopy 

(www.dukascopy.com) to obtain high-frequency data. 

The benefits of using CFDs include (i) prolonged trading hours, providing synchronous trade 

information for each asset to accurately examine co-movements and spillovers; (ii) higher liquidity 

and lower barriers to entry than future contracts, given that CFDs are traded directly with brokers; (iii) 

infinite expiration, different from futures, CFDs do not have an expiration date; (iv) quotation 

transparency and uniform platforms provided by Dukascopy for both cryptocurrency and equity indices. 

Thus, this study avoids the asynchronicity problem triggered by employing data from multiple 

dissimilar sources. While high-frequency data provides a more valuable and accurate estimation, 

determining the suitable interval is also essential. A synthesis of relevant literature reveals that using 

5-60-minute intervals provides the best trade-off between accuracy and market microstructure frictions 

(Anersen et al., 2001, 2003; Kuang, 2022; Naeem et al., 2019). Therefore, we choose the 5-minute 

interval data for all selected assets, which is the highest frequency among the suggested intervals and 

used by other recent studies (e.g., Cui and Maghyereh, 2022; Hasan et al., 2021; Wu et al., 2022; 

Yarovaya and Zięba, 2022). The data is available around the clock from 00:00 a.m. (the first available 

quote for an asset during the trading sessions each day) to 11:55 p.m. (the last available quote for an 

asset during the trading sessions each day) Greenwich Mean Time (GMT). Our data span between 

August 5, 2019, and January 31, 2023, representing 363,024 observations for each asset studied. The 

starting date of the sample is based on the availability of the 5-minute high-frequency data on 

Dukascopy.com. The study period is then divided into two main subperiods: (i) the pre-Covid period, 

which starts from the first day of the sample period (August 5, 2019) and ends before the first infected 

case reported to World Health Organization (WHO) (December 31, 2019), and (ii) the post-Covid 

period, which starts from the day when first infected case was reported to WHO (January 1, 2020) and 

ends on the last day of the sample period (January 31, 2023).  

To deeply understand the tenacity of our results during the Covid period, which also includes the 

Russia-Ukraine war period and Bitcoin flash crash in 2021, we divide the post-Covid period into two 

phases (sub-periods): (i) the first phase of Covid-19, when equities around the world experienced 

catastrophic drops in prices, whereas cryptocurrencies experienced tremendous advances in prices 

(January 1, 2020-December 31, 2020) (Ülkü et al., 2023); (ii) the second phase of the post-Covid period, 

when both cryptocurrencies and equities witnessed new peaks followed by some drops in prices, 

including the Russia-Ukraine war period (January 01, 2021-January 31, 2023). Thus, this study 

employs comprehensive high-frequency data with 4,777,344 observations [13 (assets) × 1245 

(days)×288 (prices/day)]. All selected cryptocurrencies and equity indices are priced in the US dollar, 

and the first logarithmic price difference in two consecutive 5-minute intervals is used to calculate the 

returns: 

𝑟𝑡,𝑖 = (ln(𝑝𝑡,𝑖) − ln(𝑝𝑡,𝑖−1)) × 100 (1) 

http://www.dukascopy.com/


 

 

where 𝑟𝑡,𝑖 denotes the intraday returns on day t for the ith intraday price of the selected asset as the 

natural logarithmic difference between two continuous price observations (𝑝𝑡,𝑖  and 𝑝𝑡,𝑖 ) within a 

trading day. 

Fig.1 illustrates the dynamics of 5-minute high-frequency prices. The area (i) before the first vertical 

line (from the left side) represents the pre-Covid period, (ii) between the first (solid) and second (dotted) 

vertical lines represents the first year of the Covid period (2020), (iii) between the second (dotted) and 

third (long-dashed) vertical lines represents the second year of the Covid period (2021), and (iv) after 

the third (long-dashed) vertical line represents the latest period (2022) that includes the Russia-Ukraine 

war period. Panel A of Fig. 1 shows that the price pattern of the US and Australian equity indices is 

relatively akin: a big drop in the prices at the onset of Covid-19 in March 2020, a steady recovery 

followed by solid growth from late 2020 to 2021, and a consistent drop in the prices with few small 

retrievals in 2022. The equity indices of the UK, France, and Germany likewise exhibit analogous price 

evolutions: all of them had a significant drop at the onset of the Covid-19 pandemic, followed by two 

other price dips in the last quarter of 2020 and the first quarter of 2022. The price evolution of the 

Japanese equity index was distinctive from the other equity indices, in line with the findings of previous 

studies examining co-movements among international equity markets (Ali, Sensoy, and Goodell, 2023).  

Panel B of Fig. 1 shows that BAT, BTC, and ETH reached their all-time peak two times during the sample 

period, first in April 2021 and second in November 2021, whereas LTC, EOS, and DSH reached their all-

time peak in November 2021 during the sample period. TRX, on the other hand, reached its all-time peaks 

two times in April 2021, and no significant drop or rise after that. Our results contrast with studies claiming 

cryptocurrencies are a homogenous asset class (e.g., Corbet et al., 2018). Interestingly, we find that equity 

indices, specifically European equities, are more integrated than cryptocurrencies in line with the findings 

of Ali et al. (2022) and Ali, Sensoy, and Goodell (2023). Thus, the assets under study present an interesting 

sample of equities and cryptocurrencies with diverse price progressions.  

 

Panel A: Dynamics of intraday high-frequency prices of equity indices. 

  



 

 

  

  
 

Panel B: Dynamics of intraday high-frequency prices of cryptocurrencies. 

  

  



 

 

  

 

Fig. 1. Dynamics of 5-minute high-frequency intraday prices. 

Notes: The range (i) before the first (from left) vertical line is the pre-Covid period, (ii) between the first (solid) 

and the second (dotted) vertical lines is the first year of Covid period (2020), (iii) between the second (dotted) and 

the third (long-dashed) vertical lines is the second year of the Covid period (2021), and (iv) after the third (long-

dashed) vertical line is the latest period (2022) that includes the Russia-Ukraine war period. The sample period 

spans between August 5, 2019, and January 31, 2023, representing 358,560 observations for each asset. The data 

is at a 5-minute frequency and around the clock from 00:00:00 (a.m.) to 11:55:00 (p.m.) Greenwich Mean Time. 

The price data is obtained from Dukascopy (www.dukascopy.com), all selected cryptocurrencies and equity indices 

are priced in US$. The x-axis indicates the number of observations, whereas the y-axis indicates the price. 

 

3. Empirical Framework 

3.1. Asymmetric innovation, conditional volatility, and the sign bias test 

Our empirical framework begins with estimating the asymmetric innovation and conditional volatility, 

followed by leverage effects and the sign bias test. Following relevant literature (Mandelbort, 1963), 

volatility clustering is defined as large (small) changes followed by large (small) changes, irrespective 

of the sign (positive or negative). Engle (1982) developed autoregressive conditional heteroskedasticity 

(ARCH) models that capture the pattern of volatility, where the AR framework to estimate returns can 

be defined as follows:  

𝑌𝑡 = 𝛼 + 𝛽𝑌𝑡−1 + 𝜀𝑡 , for 𝑡 = 1, 2, 3, … …  𝑛 (2) 

where 𝑌𝑡 is the return distribution, 𝛽 is the slope between the current (𝑌𝑡) and lagged (𝑌𝑡−1) returns. 𝜀𝑡 

is, therefore, the innovation process: 𝜀𝑡 ≈ (0, 𝜎2).  

Further, random innovation or news shock in this study is considered as 𝜀𝑡 = 𝜂𝑡 √ℎ𝑡 (Engle, 1982). 

While ℎ𝑡 is the conditional volatility, 𝜂𝑡 ∣ 𝐼𝑡−1 is a standard normal distribution conditional on the past 

information set (𝐼𝑡−1). The conditional volatility is consequently derived as follows: 

ℎ𝑡 = 𝜔 + 𝛼𝜀𝑡−1
2  (3) 
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where 𝜀𝑡 ∣ 𝐼𝑡−1 ≈ 𝑁(0, ℎ𝑡), 𝐸(𝜂, 𝜀𝑡) = 0, and 𝜀𝑡 ∣ 𝐼𝑡−1 ≈ 𝑁(0, ℎ𝑡), indicating that the distribution of 

𝜀𝑡 does not follow a constant variance (𝜎2) due to heteroskedasticity and a time-dependent variance 

(ℎ𝑡) with conditional distribution (𝜀𝑡 ∣ 𝐼𝑡−1). Following that, the ARCH model captures conditional 

volatility as mentioned in Eq. (3), where ω is the mean effect (or intercept) and ℎ𝑡 is the heterogeneity 

of the return distribution estimated by its conditional variance at time t depending on the random 

innovation at time 𝑡 − 1. Thus, the ARCH (1) model can be extended to a higher order as follows: 

ℎ𝑡 = 𝜔 + ∑ 𝛼𝑖𝜀𝑡−𝑖
2

𝑝

𝑖=1

 (4) 

 

While ARCH models have numerous advantages and useful applications, assuming a homogenous 

impact of positive and negative news on return volatility is a major limitation of these models: given 

that ARCH models assume squared-lagged errors. Black (1976) sheds light on this limitation and 

shows that the volatility of current and future returns is negatively correlated. Therefore, it is evident 

that negative news has a stronger/larger impact on conditional volatility than positive news, dubbed as 

the leverage effect. The leverage effect triumphs when arrivals of negative news cause comparatively 

higher volatility than arrivals of positive news in the market. Lately, Engle and Ng (1993) proposed 

the sign bias test to comprehend the presence of the leverage effect: 

𝜀𝑡
2̂ = 𝑎0 + 𝛽1𝛾𝑡−1̂ + 𝜇𝑡 (5) 

where 𝛽1 indicates the presence of asymmetric effects in conditional variance. The Engle and Ng (1993) 

model suggests incorporating all sign bias tests in a single regression model, where 𝛾𝑡−1 contains all 

three types of sign bias tests in a single regression model. In this model, 𝛾𝑡−1 = 𝑆𝑡−1
− , 𝛾𝑡−1 = 𝑆𝑡−1

− 𝜀𝑡−1, 

and 𝛾𝑡−1 = 𝑆𝑡−1
+ 𝜀𝑡−1 indicate the sign bias test (SBT), the negative size bias test (NSBT), and the 

positive size bias test (PSBT), respectively. The statistical significance of the three estimated 

coefficients in this process is jointly determined by employing a Lagrange Multiplier (LM) test, which 

follows an asymptotic χ2 distribution (see Engle and Ng, 1993). 

3.2. Asymmetric GARCH models 

The treatment of various significantly diverse episodes (i.e., market crashes and advances) in existing 

data provides the opportunity and indicates the need to unfold any asymmetric behavior that is 

important to study. It is well documented that the superiority of one particular asymmetric GARCH 

model over other models is not straightforward and therefore cannot be directly determined. We 

therefore begin our asymmetric GARCH analysis using the simple asymmetric ARCH model 

(SAARCH), introduced by Engle (1990). It can be written as follows: 

ℎ𝑡 = 𝜔 + 𝑎𝜀𝑡−1
2 + 𝛾𝜀𝑡−1 + 𝛽ℎ𝑡−1 (6) 

where γ estimates the leverage effect and α and β are the coefficients for the ARCH and GARCH 

effects, respectively.  

Zakoian (1994) further extended this model and developed the threshold GARCH (TGARCH) model. 

Unlike Engle’s (1990) squared innovations, the TGARCH model captures absolute innovations. The 

TGARCH model can be written as follows: 

ℎ𝑡 = 𝜔 + 𝑎|𝜀𝑡−1| + 𝛾|𝜀𝑡−1| 𝐼(𝜀𝑡−1 > 0) + 𝛽ℎ𝑡−1 (7) 



 

 

where α estimates the symmetric impact of innovation caused by news irrespective of its sign, γ 

indicates the leverage effect and considers only positive news.  

Ding et al. (1993) similarly extended the asymmetric GARCH models by introducing the asymmetric 

power ARCH (APARCH) model. In the APARCH model, used in this study, the power of the model 

in fact describes whether we are analyzing the conditional variance or the standard deviation. The 

APARCH model can be written as follows:  

ℎ𝑡
𝛿 = 𝜔 + ∑ 𝑎𝑗

𝑞

𝑗=1
(|𝜀𝑡−1| + 𝛾𝑗𝜀𝑡−1)

𝛿
+ ∑ 𝛽𝑖

𝑝

𝑖=1
(ℎ𝑡−𝑖)

𝛿 (8) 

 

The model assumes that ω ˃ 0, 𝛼𝑗 ≥ 0 , and 𝛽𝑖 ≥  0 , where 𝑗 = 1,2, … . . 𝑞  and 𝑖 = 1, 2, … . 𝑝 . 

Particularly, when αj= 0 and βi= 0, then ℎ𝑡
𝛿 is equal to 𝜔. However, since we assume the variance is 

positive, ω should be greater than zero (ω ˃0). Similarly, the model presented in Eq. 9 assumes that 

0 ≤ ∑ 𝑎𝑗
𝑞
𝑗=1 + ∑ 𝛽𝑖 ≥ 1

𝑝
𝑖=1 . Finally, the power coefficient “δ” is also assumed to be greater than zero 

(𝛿 ˃ 0). 

Thus far, the models we present capture asymmetric innovation, conditional volatility, leverage effects, 

sign bias tests, and different asymmetric GARCH modeling. While these models are useful and used 

by recent studies (e.g., Panda et al., 2021; Karim et al., 2022), they do not explain the volatility spillover 

among assets under study. Therefore, we also consider modeling the volatility spillover effect in the 

following section of the paper. 

3.3. Volatility spillovers using the BEKK-MGARCH model 

To capture volatility spillovers, this study considers multivariate GARCH (MGARCH) models, which 

are superior to univariate GARCH models (Yang, 2006). Our methodology follows the guidelines of 

Bae et al. (2003), Katsiampa, Corbet, and Lucey (2019), Panda et al. (2021), and Arfaoui, Yousaf, and 

Jareño (2023), who have similarly employed MGARCH models to estimate the volatility and its 

transmission in a multivariate framework to examine contagion effects spillover effects. The vector 

autoregression (VAR) model, which is based on an implicit assumption that the variables under study 

are endogenous by nature, can be presented as follows: 

𝑌𝑡 = 𝑉 + 𝐵1𝑌𝑡−1 + 𝐵2𝑌𝑡−2 + ⋯ + 𝐵𝑝𝑌𝑡−𝑝 + 𝜀𝑡 (9) 

where random innovation is estimated as 𝜀𝑡 =  𝐻𝑡
1/2

(𝜃)𝑍𝑡, subject to 𝐸(𝜀𝑡) = 0 and 𝐸(𝜀𝑡𝜀𝑡
′) = 𝐻𝑡. 

The random error distribution follows a multivariate normal distribution with a mean equal to a null 

vector and a variance-covariance equal to 𝐻𝑡. Note that the key role of employing MGARCH models 

is to model 𝐻𝑡. 

While the VAR process is used to capture the return, the Baba-Engle-Kraft-Kroner (BEKK) MGARCH 

model is used to capture the volatility spillovers (Baba et al., 1991; Engle and Kroner, 1995). The two 

most well-known and well-applied types of MGARCH models are the BEKK model and the Dynamic 

Conditional Correlation (DCC) model of Engle (2002). Given that our aim is to forecast conditional 

covariances, not conditional correlations, we employ the BEEK-MGARCH model (Katsiampa, 

Yarovaya, and Zięba, 2022; Arfaoui et al., 2023). In view of the multivariate BEKK (p,q) modeling of 

conditional variance proposed by Baba et al. (1991), the conditional variance of the multivariate 

GARCH model can be written as follows: 



 

 

𝐻𝑡 = 𝐶′𝐶 + ∑ 𝐴𝑖
′𝜀𝑡−𝑖𝜀𝑡−𝑖

′
𝑝

𝑖=1
𝐴𝑖 + ∑ 𝐵𝑗

′𝐻𝑡−𝑖

𝑞

𝑗=1
𝐵𝑗 (10) 

where C is an upper triangular matrix with a positive principal diagonal (Bekiros, 2014), and 𝐴𝑖 and 

𝐵𝑗 are the coefficient matrices. The diagonal (off-diagonal) elements of matrices A and B capture the 

impact of the asset’s own (cross-market) past shocks and past volatility (Li and Majerowska, 2008), 

respectively. The outlined GARCH-BEKK model satisfies a positive semi-definiteness of 𝐻𝑡 without 

forcing any conditions; thus, it can be interpreted as a restricted version of the diagonal VECH model 

introduced by Bollerslev et al. (1988). 

3.4. Modelling the connectedness framework 

Accurately measuring and examining the relative intensity of shocks and their spillovers are crucial 

for investors and policymakers, given that they not only help in identifying changes that are arising 

from shocks in different financial and economic variables but also guide in effectively fine-tuning 

strategies to cope with such changes and their corresponding adverse impacts on investments/portfolios. 

The connectedness framework of Diebold and Yilmaz (2008, 2012, 2014) is widely used and 

considered one of the most suitable frameworks to capture the magnitude of spillover from variable 'i' 

to variable 'j'. Lately, Antonakakis, Chatziantoniou, and Gabauer (2020) introduced the TVP-VAR 

method that extended Diebold-Yilmaz’s framework. The benefits of employing the TVP-VAR model 

include (i) quick adjustment of parameters to shocks and events and (ii) insensitivity to the selection 

of a rolling window. The former adjusts the time-varying nature of the relationships among variables, 

whereas the latter helps avoid the concerns of arbitrariness in window selection and loss of observations. 

These features are particularly important while studying volatile assets like cryptocurrencies and 

turmoil (bubble) periods like the Covid-19 pandemic, the Russia-Ukraine conflict, and other 

geopolitical and financial market stress periods (cryptocurrency bubble/boom episodes). Thus, we 

employ the TVP-VAR model to capture total directional connectedness, pairwise directional 

connectedness, net connectedness, and a total connectedness index. The TVP-VAR model can be 

specified as follows: 

𝑦𝑡 = 𝐶𝑡𝑧𝑡−1 + 𝜇𝑡𝜇𝑡|𝜌𝑡−1~𝑁(0, 𝑆𝑡) (11) 

 

𝑣𝑒𝑐(𝐶𝑡) = 𝑣𝑒𝑐(𝐶𝑡−1) + 𝑣𝑡𝑣𝑡|𝜌𝑡−1~𝑁(0, 𝑅𝑡) (12) 

 

where 𝐶𝑡 denotes the coefficient matrix, 𝜌𝑡−1 indicates the information set at time 𝑡– 1, and 𝑧𝑡−1 is a 

𝑛𝑝 × 1 vector that includes p lags of 𝑦𝑡 , where the lag length of p is determined by the Bayesian 

information criterion. 𝑣𝑡  and 𝜇𝑡 represent the error term with n×1 and 𝑛𝑝 × 1 dimensional vectors. 

Finally, 𝑆𝑡  and 𝑅𝑡  are the time-varying variance-covariance matrices representing the 𝑛 × 𝑛  and 

𝑛2𝑝 × 𝑛2𝑝 dimensional matrix.  

The variance-covariance matrices in this condition vary via the Kalman filter estimation procedure 

with forgetting factors (Koop and Korobilis, 2014). Bayesian criterion is used to initiate the Kalman 

filter, whereas H-step ahead generalized forecast error variance decomposition (GFEVD) is used 

independent of the variable ordering (Koop, Pesaran, and Potter, 1996). In doing so, we first transform 

TVP-VAR to a vector moving average (VMA) based on the Wald theorem as follows: 



 

 

𝑦𝑡 = Σ𝑖=1
𝑝

𝐶𝑖𝑡𝑧𝑡−𝑖 +  𝜇𝑡 = Σ𝑗=0
∞ 𝐴𝑗𝑡𝜇𝑡−𝑗 (13) 

where 𝐴𝑗𝑡 is a 𝑛 × 𝑛 dimensional matrix.  

The GFEVD (∅𝑖𝑗,𝑡(𝐻)) is presented in the following formula: 

∅𝑖𝑗,𝑡(𝐻) =
𝑆𝑖𝑖,𝑡

−1 ∑  𝐻−1
𝑡=1   (𝑙𝑖

′𝐴𝑡𝑆𝑡𝑙𝑗)
2

∑  𝑘
𝑗=1 ∑  𝐻−1

𝑡=1   (𝑙𝑖
 𝐴𝑡𝑆𝑡𝐴𝑡

′ 𝑙𝑖)
 (14) 

where 𝑙𝑗 corresponds to a vector with ith element equaling 1 and other elements equaling zero. Given 

that ∅𝑖𝑗,𝑡(𝐻) may not tally up to unity for a particular variable i, we normalize it using the following 

formula (Antonakakis et al., 2020; Diebold and Yilmaz, 2012, 2014): 

∅̃𝑖𝑗,𝑡(𝐻) =
∅𝑖𝑗,𝑡(𝐻)

Σ𝑗=1
𝑛 ∅𝑖𝑗,𝑡(𝐻)

 (15) 

where ∅̃𝑖𝑗,𝑡(𝐻) indicates the percentage of the forecast error variance in variable i that is explained by 

variable j. We use GFEVD to calculate several connectedness measures including total directional 

connectedness, pairwise directional connectedness, net total directional connectedness, directional 

connectedness of variable i to all other variables, and directional connectedness of all variables to 

variable i.  

Total directional connectedness with others (TO): This index indicates the shocks that asset i transmits 

to all other assets under study j, defined as follows: 

TO𝑖→j,t(H) =
Σ𝑗=1,𝑖≠𝑗

𝑁 ∅̃𝑗𝑖,𝑡(𝐻)

∑𝑖,𝑗=1
𝑁  ∅̃𝑗𝑖,𝑡(𝐻)

× 100 (16) 

 

Total directional connectedness from others (FROM): This index indicates the shocks that asset i 

receives from all other markets j, defined as follows: 

FROM𝑗→i,t(H) =
Σ𝑗=1,𝑖≠𝑗

𝑁 ∅̃𝑖𝑗,𝑡(𝐻)

Σ𝑖,𝑗=1
𝑁 ∅̃𝑖𝑗,𝑡(𝐻)

× 100 (17) 

 

Note that while examining pairwise directional volatility spillovers, we accordingly correct Eqs. (16) 

and (17); that is, instead of using the off-diagonal sum of rows (or columns), we use the pairwise 

directional spillover from an asset j (i) to another i (j).  

Net total directional connectedness: This index indicates the difference, “NET”, between the two 

spillover indices described in Eqs. (16-17), i.e., TO and FROM. Mathematically, it can be defined as 

follows: 



 

 

NETij,t(H) = TO𝑖→j,t(H) − FROM𝑗→i,t(H) (18) 

 

This index indicates the net influence of each asset (i) on the remaining assets under consideration in 

the model. If the net connectedness index is positive, asset i is considered a net transmitter of shocks 

(volatility or return). Likewise, if the net volatility spillover is negative, asset i is considered a net 

receiver of shocks (volatility or return). Similar to “TO’ and “FROM”, we can calculate pairwise ‘NET’ 

connectedness between any two variables studied. 

Total connectedness index (TCI): This index indicates how a shock in one asset spills over to other 

assets, market interconnectedness, defined as follows:  

TCI 𝑡 (𝐻) =
∑  𝑁

𝑖,𝑗=1,𝑖≠𝑗   ∅̃𝑖𝑗,𝑡(𝐻)

∑  𝑁
𝑖,𝑗=1   ∅̃𝑖𝑗,𝑡(𝐻)

× 100 =
∑  𝑁

𝑖,𝑗=1,𝑖≠𝑗   ∅̃𝑖𝑗,𝑡(𝐻)

𝑁
× 100 (19) 

 

Our connectedness measures are in line with several seminal studies published in leading finance and 

economics journals; for example, Liang, Goodell, and Li (2024), Lu, Huang, and Ma (2024), Naeem 

et al. (2024), Kanas, Molyneux, and Zervopoulos (2023), Sun et al. (2023).  

4. Results and Discussion 

4.1. Preliminary findings  

Table 1 presents descriptive statistics in Panel A and realized volatility (RV) in Panel B: 𝑅𝑉𝑡 = ∑ 𝑟𝑡,𝑖
2𝑇

𝑖=1  

where 𝑟𝑡,𝑖  denotes intraday returns and T denotes the number of intraday logarithmic returns (i 

=1,2,3, …, T). The mean return of all the equity indices except Australia and the UK is positive during 

the sample period. The US market offers the highest return followed by Japan. Among cryptocurrencies, 

LTC, DSH, and EOS provide negative mean returns, whereas BTC, ETH, TRX, and BAT provide 

positive mean returns during the sample period. While ETH and TRX provide the highest mean return, 

EOS and DSH provide the lowest mean return. A comparison between the pre- and post-Covid periods 

shows that mean returns of all the equity indices are comparatively higher in the pre-Covid period than 

the post-Covid period, except in Australia. The standard deviation values are similarly low during the 

pre-Covid period, indicating lower volatility during this period compared to the post-Covid period. On 

the contrary, both mean return and standard deviation values of cryptocurrencies are higher during the 

post-Covid period than the pre-Covid period, except TRX. Although the mean return of TRX is 

substantially higher during the post-Covid period, similar to other cryptocurrencies, the standard 

deviation of TRX is surprisingly low. It indicates that TRX not only yielded higher but also consistent 

returns, which could specifically be beneficial for investors searching for assets with higher Sharpe 

ratios. 

Regarding realized volatility among equities, France and Germany have the highest mean values, 

whereas France and Australia have the highest standard deviation values of RV during the full sample 

period. This finding indicates that the volatility in German equities was persistently high, Australian 

equities was unsteady, and French equities was both unsteady and high on average. Among 

cryptocurrencies, TRX has the highest mean RV followed by LTC and DSH, whereas TRX has the 



 

 

highest standard deviation of RV followed by DSH. While comparing the realized volatility between 

pre- and post-Covid periods, we find that it is comparatively higher during the post-Covid period for 

most of the cryptocurrencies and equities. The realized volatility of LTC is comparable in both sub-

periods, whereas it is lower for ETH and TRX in the post-Covid period. It indicates that the realized 

volatility of LTC remained very stable throughout the sample period, whereas ETH and TRX were 

more stable during the post-Covid period than the pre-Covid period. 

Table 2 presents the results of stationarity tests; all return series across all the subperiods under study 

are stationary. The null hypothesis of the unit root is rejected at the 1% level of significance by both 

Augmented Dickey-Fuller (ADF) and Phillips–Perron (PP) tests, indicating that the log returns 

estimated using 5-minute price data are mean reverting and satisfy the conditions of models applied in 

this study.  

Table 1. Descriptive statistics of high-frequency returns and realized volatility. 

 

Full sample Pre-Covid-19 Post-covid-19 

Mean 
St. 

Dev. 
Kurt. Skew. Mean 

St. 

Dev. 
Kurt. Skew. Mean 

St. 

Dev. 
Kurt. Skew. 

Panel A: Daily returns using 5-minute high-frequency returns 

US 0.024 1.23 15.07 -0.33 0.067 0.82 11.98 -1.65 0.017 1.28 14.31 -0.25 

UK -0.002 1.14 17.13 -1.25 0.014 0.75 8.53 -1.69 -0.005 1.20 16.32 -1.20 

FR 0.010 1.38 24.64 -2.04 0.071 0.72 5.36 -1.36 0.000 1.46 22.55 -1.96 

GER 0.007 1.32 16.91 -0.84 0.065 0.82 8.20 -1.54 -0.002 1.39 15.91 -0.78 

AUS -0.002 1.16 23.77 -0.03 -0.009 0.67 14.18 -2.60 -0.001 1.22 22.11 0.04 

JP 0.022 1.17 13.75 -0.57 0.079 0.78 5.69 -0.74 0.013 1.22 13.15 -0.54 

BTC 0.057 4.03 22.63 -1.75 -0.290 3.18 5.12 0.69 0.113 4.15 23.20 -1.93 

LTC -0.053 5.56 10.37 -1.23 -0.550 4.14 4.14 -0.53 0.028 5.76 10.30 -1.27 

ETH 0.149 5.22 17.97 -1.63 -0.369 3.79 4.71 -0.60 0.233 5.42 17.89 -1.69 

DSH -0.103 6.44 10.97 -0.16 -0.635 3.68 4.89 -0.73 -0.016 6.79 10.12 -0.17 

EOS -0.144 6.25 14.06 -0.88 -0.329 4.59 11.59 -1.00 -0.114 6.48 13.60 -0.87 

TRX 0.109 6.03 11.94 -0.74 -0.273 7.04 6.13 0.43 0.172 5.85 13.68 -1.05 

BAT 0.048 6.56 10.53 -0.38 -0.170 4.72 1.35 -0.29 0.083 6.81 10.37 -0.39 

 Panel B: Realized volatility using 5-minute high-frequency returns. 

US 0.016 0.05 86.59 8.49 0.005 0.01 6.76 2.49 0.018 0.06 74.62 7.90 

UK 0.014 0.05 228.17 13.10 0.005 0.00 4.12 1.71 0.016 0.06 197.16 12.19 

FR 0.018 0.07 229.75 13.15 0.005 0.01 7.34 2.36 0.020 0.08 198.55 12.23 

GER 0.018 0.05 84.13 8.31 0.006 0.01 7.61 2.41 0.020 0.06 72.58 7.73 

AUS 0.015 0.06 151.46 10.96 0.004 0.00 4.91 1.89 0.17 0.07 130.35 10.18 

JP 0.016 0.04 83.95 8.28 0.006 0.01 6.55 2.17 0.17 0.05 72.49 7.72 

BTC 0.176 0.43 246.15 13.56 0.096 0.13 10.14 2.90 0.190 0.46 217.75 12.84 

LTC 0.854 0.95 87.17 7.36 0.858 0.49 1.03 1.10 0.854 1.01 80.65 7.21 

ETH 0.358 0.66 169.82 11.00 0.541 0.38 1.29 0.60 0.328 0.69 166.84 11.25 

DSH 0.741 7.64 770.27 26.90 0.154 0.16 7.80 2.45 0.837 8.24 662.38 24.95 

EOS 0.418 0.97 246.12 12.95 0.217 0.43 51.81 6.50 0.451 1.03 224.94 12.50 

TRX 6.642 23.10 17.48 4.04 45.098 45.66 -0.27 0.64 0.360 0.81 145.36 10.36 

BAT 0.624 1.11 313.67 14.37 0.531 0.40 1.23 1.01 0.639 1.18 279.82 13.69 

Notes: This table reports descriptive statistics of 5-minute high-frequency returns, calculated as the first logarithmic price 

difference in two consecutive 5-minute intervals (see Eq. (1)). Panel A reports the returns, estimated by the accumulative 



 

 

average of the 5-minute interval returns from 00:000 (a.m.) to 23:55 (p.m.) Greenwich Mean Time (GMT) each day. Panel 

B reports the realized volatility (RV); 𝑅𝑉𝑡 = ∑ 𝑟𝑡,𝑖
2𝑇

𝑖=1 . Here, 𝑟𝑡,𝑖 denotes intraday returns and T denotes the number of intraday 

logarithmic returns (i =1,2,3, …, T). In our case, T is 288 (each day). The full sample period spans between August 5, 2019 

(00:00 a.m.), and January 31, 2023 (11:55 p.m.), representing 363,024 observations for each asset. The pre-Covid period 

spans between August 5, 2019 (00:00 a.m.), and December 31, 2019 (11:55 p.m.), whereas the post-Covid period spans 

between January 1, 2020 (00:00 a.m.), and January 31, 2023 (11:55 p.m.). US, UK, FR, GER, AUS, and JP stand for the 

equity indices in the United States (S&P500), United Kingdom (FTSE100), France (CAC40), Germany (DAX), Australia 

(S&PASX200), and Japan (Nikkei225). BTC, LTC, ETH, DSH, EOS, TRX, and BAT represent Bitcoin, Litecoin, Ether, 

Dashcoin, EOS, Tron, and Basic Attention Token, respectively. The price data is obtained from Dukascopy 

(www.dukascopy.com), and all selected cryptocurrencies and equity indices are priced in US$. 

 

Table 2. Stationarity tests of the high-frequency data of selected equity indices and cryptocurrencies. 

 
Full sample  Pre-covid19  Post-Covid19 

ADF PP  ADF PP  ADF PP 

US -132.41a -565.45a  -206.81a -206.82a  -232.43a -524.92a 

UK -396.78a -562.73a  -145.83a -211.99a  -368.23a -521.81a 

France -155.66a -557.50a  -211.54a -211.54a  -137.98a -516.63a 

Germany -139.32a -562.99a  -210.46a -210.50a  -129.12a -522.02a 

Australia -63.74a -565.07a  -210.52a -210.55a  -80.91a -523.97a 

Japan -121.44a -560.07a  -209.36a -209.35a  -112.91a -519.39a 

BTC -215.40a -560.94a  -207.21a -207.31a  -200.37a -521.16a 

LTC -158.40a -774.71a  -87.70a -377.51a  -172.19a -697.10a 

ETH -240.92a -628.27a  -100.76a -354.30a  -201.25a -539.71a 

DSH -59.97a -685.40a  -220.91a -220.57a  -56.62a -639.88a 

EOS -166.22a -570.16a  -70.93a -216.87a  -154.58a -528.03a 

TRX -65.27a -1890.98a  -63.35a -1561.85a  -216.21a -513.78a 

BAT -238.66a -613.96a  -174.84a -284.67a  -138.84a -554.67a 

Notes: This table reports the results of stationarity tests of the selected equity indices and cryptocurrencies. ADF 

stands for Augmented Dickey-Fuller test and PP stands for Phillips–Perron tests of unit root. “a” indicates the level 

of significance at 1% level. All variables and sample periods are defined in Table 1.  

 

Table 3 presents the Pearson correlation and shows that the correlation among intra-class assets is 

higher than the correlation among inter-class assets. For example, correlation coefficients among 

equity indices (cryptocurrencies) vary between 0.69 and 0.85 (0.62 and 0.84), whereas correlation 

coefficients between equity indices and cryptocurrencies (the left bottom corner of each panel) vary 

between 0.21 and 0.41. The main reason for presenting correlations is to understand the return and 

price dynamics of the assets studied. To deeply understand random innovations and volatility dynamics, 

we empirically examine information bias and leverage effects, sign bias tests, and spillovers and 

connectedness in the following sections of the study. 

4.2. Leverage effects on equity and cryptocurrency returns 

It is often conversed in the financial markets literature that negative news has a stronger impact on the 

conditional volatility of market returns than that of its actual size counterpart, dubbed as “leverage 

effect” by Black (1976) and Christie (1982). If so, a high level of leverage effect is most likely to 

increase not only the possibility of a high risk but also the volatility of returns. 
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Table 3. Pearson correlation among the returns of selected cryptocurrencies and equity indices. 

 US UK FR GER AUS JP BTC LTC ETH DSH EOS TRX 

Panel A: Full sample  

UK 0.784            

FR 0.694 0.797           

GER 0.845 0.853 0.814          

AUS 0.821 0.776 0.686 0.792         

JP 0.814 0.746 0.718 0.800 0.740        

BTC 0.400 0.337 0.322 0.390 0.339 0.407       

LTC 0.347 0.305 0.281 0.327 0.290 0.348 0.811      

ETH 0.405 0.346 0.321 0.388 0.354 0.400 0.835 0.833     

DSH 0.291 0.243 0.208 0.267 0.232 0.284 0.661 0.748 0.691    

EOS 0.310 0.251 0.239 0.289 0.254 0.312 0.721 0.812 0.757 0.755   

TRX 0.291 0.239 0.235 0.289 0.258 0.297 0.638 0.684 0.677 0.628 0.722  

BAT 0.336 0.293 0.278 0.320 0.268 0.319 0.652 0.680 0.691 0.634 0.703 0.618 

Panel B: Pre-Covid-19 

UK 0.808            

FR 0.839 0.780           

GER 0.890 0.817 0.891          

AUS 0.752 0.733 0.737 0.734         

JP 0.870 0.714 0.767 0.849 0.700        

BTC -0.041 -0.047 0.005 -0.025 -0.043 -0.072       

LTC 0.039 0.049 0.070 0.056 0.019 -0.016 0.762      

ETH 0.013 0.021 0.046 0.040 0.006 -0.019 0.798 0.846     

DSH -0.025 -0.059 0.002 0.015 -0.014 -0.037 0.732 0.788 0.820    

EOS 0.003 0.012 0.050 0.044 0.009 -0.040 0.745 0.828 0.870 0.802   

TRX 0.235 0.208 0.234 0.238 0.222 0.195 0.486 0.645 0.573 0.507 0.575  

BAT 0.018 0.083 0.093 0.085 0.015 -0.013 0.436 0.577 0.615 0.611 0.600 0.417 

Panel C: Post-Covid-19 

UK 0.782            

FR 0.688 0.799           

GER 0.842 0.855 0.811          

AUS 0.826 0.778 0.684 0.796         

JP 0.811 0.748 0.717 0.797 0.743        

BTC 0.437 0.368 0.345 0.422 0.367 0.447       

LTC 0.371 0.325 0.296 0.347 0.309 0.377 0.815      

ETH 0.435 0.370 0.339 0.413 0.377 0.432 0.838 0.831     

DSH 0.310 0.260 0.217 0.281 0.244 0.303 0.658 0.747 0.684    

EOS 0.333 0.269 0.251 0.306 0.270 0.338 0.719 0.810 0.748 0.754   

TRX 0.305 0.248 0.244 0.303 0.269 0.317 0.669 0.700 0.703 0.660 0.755  

BAT 0.359 0.309 0.289 0.336 0.284 0.344 0.670 0.688 0.697 0.637 0.711 0.657 

Notes: This table reports the Pearson correlation coefficients. All the variables and subperiods are defined in Table 1. 

Correlation coefficients among the equity indices are in bold, cryptocurrencies are in italics, and equity and cryptocurrency 

series are in the left bottom corners of each panel.  

 



 

 

To capture the impact of random innovations on the volatility of the equity indices and cryptocurrencies 

studied, we employ the sign bias test of Engle and Ng (1993). Table 4 reports the results of leverage 

effects, captured by the negative sign bias test (NSBT). The results show that on average 

cryptocurrencies have higher leverage effects than equity indices in the full sample, the coefficients of 

NSBT are negative and larger than the coefficients of the positive sign bias test (PSBT). The results of 

the full sample period and the post-Covid period are comparable, indicating that full sample results are 

not overwhelmed by the pre-Covid market conditions, they rather exhibit recent (post-Covid) market 

conditions. A straightforward comparison between Panels B and C suggests that a larger impact of 

negative news than positive news on equity indices is exacerbated before the onset of the Covid 

pandemic, whereas, on cryptocurrencies, it is exacerbated after the onset of the Covid pandemic. In 

other words, most of the equity indices are relatively equally affected by both positive and negative 

news after the onset of Covid-19, whereas most of the cryptocurrencies are relatively equally affected 

by both positive and negative news before the onset of Covid-19. The leverage effect in alternative 

periods is strongly manifested — before (after) Covid-19 for equities (cryptocurrencies). 

The comparable intensity of responses to negative and positive shocks in equity returns at the onset of 

Covid-19 returns is conceivable given that while negative news caused serious turmoil in equity 

markets, economic relief packages and effective actions to safeguard investors by different 

governments caused both recovering from the downturn and achieving new peaks. Since Covid-19 was 

an unusual event, specifically the first year of the pandemic, the unusual stimulus packages similarly 

help investors gain substantial confidence. If this conjecture is true that positive news during Covid-

19 had specific importance, the results should be limited to the first phase of Covid-19.  

 

Table 4. Leverage effects. 

 Panel A: Full sample Panel B: Pre-Covid-19 Panel C: Post-Covid-19 

 SBT NSBT PSBT SBT NSBT PSBT SBT NSBT PSBT 

US 0.004a -0.206a 0.236a -0.000b -0.064a 0.053a 0.004a -0.212a 0.242a 

UK 0.004a -0.132a 0.199a -0.001a -0.052a 0.041a 0.000c -0.142a 0.186a 

France 0.002c -0.126a 0.150a -0.001a -0.056a 0.037a 0.000c -0.128a 0.144a 

Germany 0.003a -0.151a 0.205a -0.000c -0.058a 0.053a 0.000c -0.158a 0.196a 

Australia 0.005a -0.199a 0.238a -0.001a -0.037a 0.022a -0.004c -0.221a 0.217a 

Japan 0.004a -0.128a 0.195a -0.000c -0.051a 0.048a 0.004a -0.132a 0.202a 

BTC 0.019a -0.777a 0.772a 0.007c -0.327a 0.342a 0.016a -0.826a 0.811a 

LTC 0.284a -0.764a 0.855a 0.244a -0.343a 0.424a -0.439a -1.158a 0.622a 

ETH 0.027a -0.826a 0.667a -0.071a -0.417a 0.189a 0.011b -0.979a 0.731a 

DSH 1.544a -1.445a 8.113a -0.008c -0.288a 0.310a 1.738a -1.481a 8.524a 

EOS -0.241a -2.143a 0.746a -0.056a -1.039a 0.187a -0.291a -2.282a 0.795a 

TRX 1.029a -3.678a 3.779a 3.712a -2.108a 2.653a -0.131a -1.801a 0.977a 

BAT 0.127a -0.738a 0.923a -0.058a -0.455a 0.345a 0.125a -0.795a 0.971a 

Notes. This table reports the results of the leverage effects in the high-frequency data of the selected assets 

defined in Table 1. SBT, NSBT, and PSBT indicate sign bias test, negative sign bias test, and positive sign bias 

test, respectively. a, b, and c indicate the level of significance at the 1%, 5%, and 10% level. Table 1 defines the 

subsample. 

 



 

 

For clarity, we extend our analysis by dividing the Covid-19 pandemic period into two episodes and 

present results in Table 5. Our high-frequency results for equity indices agree with the findings of 

Panda et al. (2021), who employ low-frequency data on different Asia-Pacific markets and find that 

Australian equities are more sensitive to negative news than positive news in the post-global financial 

crisis period than the pre-global financial crisis period. The NSBT values of the Australian equity 

market reported in Table 4 are the lowest in the pre-Covid period and highest in the post-Covid period, 

indicating a substantially increased leverage effect during Covid-19. Likewise, the intensity of the 

response to negative news (shocks) is higher for DSH, EOS, and TRX among the cryptocurrencies. 

The results in Table 5 are in line with our conjecture that the absence of the leverage effect in the post-

Covid period is specific to the first year of the pandemic (2020). The leverage effect in the second year 

of the Covid pandemic is present for all the selected assets except DSH and BAT. In sum, we show 

that the first year of Covid was relatively unique where the impact of positive and negative news on 

the assets under study was comparable, specifically for DSH and BAT. The leverage effect on the 

returns of EOS is the most persistent, it prevails in all subperiods. To examine the robustness of the 

leverage effects and volatility dynamics, we extend our analysis and employ more advanced 

econometric models. Specifically, to estimate and capture asymmetric innovation (volatility) shocks 

in the return distribution of the assets studied, we consider SAARCH, APARCH, and TGARCH 

models. Results are presented in Table 6. 

 

Table 5. Further examinations of leverage effects. 

 The first year of Covid-19 (2020) The second year of Covid-19 (2021) 

 SBT NSBT PSBT SBT NSBT PSBT 

US 0.0063a -0.2504a 0.2921a -0.0003a -0.0766a 0.0582a 

UK 0.0072a -0.1483a 0.2462a -0.0005a -0.0596a 0.0484a 

France 0.0001 -0.1478a 0.1592a -0.0007b -0.0527a 0.0432a 

Germany 0.0060a -0.1738a 0.2516a -0.0005a -0.0642a 0.0527a 

Australia -0.0046c -0.2501a 0.2575a -0.0007a -0.0433a 0.0299a 

Japan 0.0019 -0.1543a 0.2436a -0.001a -0.0888a 0.0607a 

BTC 0.1082a -0.9553a 1.5035a -0.0715a -0.9316a 0.4819a 

LTC 0.3433a -0.7025a 0.8672a 0.2260a -1.2575a 1.1751a 

ETH 0.2314a -0.7097a 1.1719a -0.1767a -1.6638a 0.6732a 

DSH 0.0797a -0.9205a 1.4789a 2.5434a -1.6913a 10.5857a 

EOS -0.0835a -1.7727a 1.0907a -0.6011a -3.0283a 0.7416a 

TRX 0.0598a -1.2472a 1.3513a -0.4567a -2.6808a 0.6587a 

BAT 0.2510a -0.7450a 1.1267a 0.0638a -0.8577a 0.9650a 

Notes. This table extends Table 4 by dividing the post-Covid period into two parts, the first year of the Covid-19 

pandemic (01.01.2020-31.12.2020) and the second year of the Covid-19 pandemic (01.01.2021-31.12.2021). All 

selected assets are defined in Table 1. a, b, and c indicate the level of significance at the 1%, 5%, and 10% levels. 

 

Table 6. Asymmetric GARCH models for selected equities and cryptocurrencies.  

 
SAARCH  TGARCH   APARCH 

α 𝜸 β  α 𝜸 β  α 𝜸 β δ 



 

 

Panel A: Full sample 

US 0.081a -0.005a 0.896a  0.098a -0.057a 0.914a  0.073a -0.090a 0.871a 2.849a 

UK 0.058a -0.002a 0.918a  0.055a -0.018a 0.938a  0.053a -0.039a 0.892a 2.964a 

France 0.122a -0.006a 0.794a  0.168a -0.050a 0.750a  0.106a -0.097a 0.777a 2.675a 

Germany 0.073a -0.003a 0.909a  0.075a -0.028a 0.928a  0.066a -0.053a 0.887a 2.884a 

Australia 0.036a -0.002a 0.941a  0.128a -0.023a 0.807a  0.002a -0.060a 0.990a 3.380a 

Japan 0.080a -0.003a 0.894a  0.207a -0.050a 0.744a  0.067a -0.070a 0.879a 2.834a 

BTC 0.172a -0.009a 0.786a  0.195a -0.054a 0.778a  0.174a -0.076a 0.781a 2.071a 

LTC 0.093a -0.018a 0.868a  0.150a -0.025a 0.837a  0.067a -0.054a 0.837a 2.909a 

ETH 0.097a -0.011a 0.863a  0.102a -0.028a 0.882a  0.094a -0.099a 0.851a 2.407a 

DSH 0.128a -0.006a 0.858a  0.131a -0.015a 0.870a  0.132a -0.056a 0.859a 1.821a 

EOS 0.173a -0.018a 0.804a  0.213a -0.085a 0.802a  0.173a -0.114a 0.800a 2.073a 

TRX 0.139a -0.016a 0.826a  0.126a -0.012a 0.888a  0.127a -0.039a 0.775a 3.106a 

BAT 0.087a -0.010a 0.895a  0.099a -0.024a 0.901a  0.088a -0.077a 0.897a 1.885a 

Panel B: Pre-Covid-19 

US 0.094a -0.001a 0.908a  0.082a -0.027a 0.933a  0.092a -0.084a 0.912a 1.817a 

UK 0.081a -0.001a 0.931a  0.074a -0.023a 0.947a  0.078a -0.090a 0.939a 1.540a 

France 0.233a 0.000a 0.779a  0.194a 0.092a 0.739a  0.310a -0.029a 0.615a 0.779a 

Germany 0.093a -0.001a 0.918a  0.079a -0.014a 0.937a  0.092a -0.045a 0.921a 1.824a 

Australia 0.038a 0.000v 0.965a  0.163a -0.027a 0.818a  0.036a -0.048a 0.962a 2.221a 

Japan 0.059a -0.001a 0.945a  0.207a -0.023a 0.767a  0.202a -0.053a 0.784a 1.346a 

BTC 0.401a -0.021a 0.509a  0.348a -0.077a 0.511a  0.466a -0.075a 0.432a 2.828a 

LTC 0.181a -0.015a 0.747a  0.256a -0.023a 0.766a  0.023a -0.013a 0.578a 5.765a 

ETH 0.109a 0.010a 0.885a  0.099a -0.046a 0.924a  0.069a -0.171a 0.933a 1.216a 

DSH 0.198a 0.009a 0.670a  0.174a 0.016a 0.671a  0.197a 0.053a 0.682a 1.754a 

EOS 0.272a -0.034a 0.582a  0.273a -0.106a 0.551a  0.315a -0.137a 0.508a 3.137a 

TRX 0.165a -0.057a 0.840a  0.125a 0.025a 0.903a  0.255a 0.015c 0.715a 3.031a 

BAT 0.105a 0.006a 0.867a  0.094a -0.005b 0.884a  0.071a 0.056a 0.914a 1.175a 

Panel C: Post-Covid-19  

US 0.081a -0.005a 0.894a  0.100a -0.059a 0.911a  0.071a -0.091a 0.870a 2.911a 

UK 0.056a -0.002a 0.919a  0.054a -0.018a 0.938a  0.048a -0.035a 0.890a 3.144a 

France 0.118a -0.007a 0.797a  0.151a -0.036a 0.764a  0.100a -0.103a 0.778a 2.751a 

Germany 0.071a -0.003a 0.911a  0.075a -0.029a 0.928a  0.062a -0.054a 0.886a 2.992a 

Australia 0.035a -0.002a 0.941a  0.041a -0.014a 0.951a  0.019a -0.059a 0.915a 3.724a 

Japan 0.081a -0.003a 0.891a  0.199a -0.037a 0.745a  0.066a -0.072a 0.874a 2.951a 

BTC 0.139a -0.008a 0.824a  0.172a -0.051a 0.811a  0.139a -0.082a 0.821a 2.045a 

LTC 0.082a -0.017a 0.885a  0.132a -0.025a 0.858a  0.062a -0.061a 0.857a 2.846a 

ETH 0.097a -0.012a 0.851a  0.125a -0.052a 0.851a  0.089a -0.105a 0.838a 2.535a 

DSH 0.120a -0.007a 0.874a  0.131a -0.017a 0.879a  0.126a -0.068a 0.873a 1.745a 

EOS 0.148a -0.013a 0.852a  0.182a -0.066a 0.854a  0.152a -0.127a 0.855a 1.667a 

TRX 0.132a -0.006a 0.868a  0.157a -0.029a 0.865a  0.139a -0.075a 0.869a 1.651a 

BAT 0.082a -0.008a 0.909a  0.098a -0.032a 0.914a  0.083a -0.084a 0.912a 1.821a 

Notes. This table reports the results of asymmetric GARCH modeling of selected equity indices and cryptocurrencies 

using three different sample periods, defined in Table 1. SAARCH, APARCH, and TGARCH represent the simple 

asymmetric ARCH model, asymmetric power ARCH model, and threshold GARCH model, respectively. In SAARCH 

modeling, α is the ARCH coefficient, γ is the leverage coefficient, and β is the GARCH coefficient. In TGARCH 

modeling, α is the ARCH coefficient (ABARCH), γ is the leverage coefficient, and β is the GARCH coefficient 



 

 

(SDGARCH) for heterogeneity effects. In APARCH modeling, α is the ARCH coefficient (APARCH), γ is the 

leverage coefficient, β is the GARCH coefficient (PGARCH), and δ is the asymmetric power assigned to ARCH 

models, which indicates the expected nature of the dependent variable. a, b, and c indicate the level of significance at 

the 1%, 5%, and 10% level. 

 

All three terms, α (ARCH coefficient), γ (leverage coefficient), and β (GARCH coefficient), are 

statistically significant at the 1% significance level for all equity indices and cryptocurrencies, except 

for BAT. The leverage effect on BAT’s returns is rejected by both TGARCH and APARCH models at 

the 1% significance level, confirming the robustness of our earlier results reported in Table 4. As our 

prime interest in this analysis is to measure the leverage coefficient (γ), the results using any of the 

three asymmetric GARCH models indicate that the returns of all selected assets experienced leverage 

effects in the post-Covid and full sample periods. While results in this section indicate leverage effects 

in most cases, they are not straightforward in the pre-Covid period. For example, the leverage effect is 

rejected by the (i) SAARCH model for France, Australia, ETH, DSH, and BAT; (ii) TGARCH model 

for France, DSH, and TRX; and (iii) APARCH model for DSH, TRX, and BAT. However, the strong 

statistical significance of the three coefficients in this study indicates a substantial impact of random 

innovations on the returns of the selected cryptocurrencies and equity indices. 

4.3. Spillover effects using BEKK-MGARCH 

This section focuses on the intra- and inter-market spillovers using the BEKK-MGARCH model. Panel 

A of Table 7 presents volatility spillovers among the cryptocurrencies, whereas Panel B presents return 

volatility spillovers among the equity indices. The return volatility spillovers between equities and 

cryptocurrencies are presented in Table 8. The main diagonal values of the upper triangular matrix (c11, 

c22, c33, … cnn) show the influence of the selected market’s return on its past mean values, where n 

indicates the total number of assets under consideration. For instance, n is 7 (6) in Panel A (B) of Table 

7 as there are seven (six) cryptocurrencies (equity indices). In Table 8, n is 13 as there are thirteen 

assets under study. The significant off-diagonal values of the C matrix, cij, imply the cross-mean 

spillover of the past shocks of one asset to another.  

While examining cross-mean spillovers of cryptocurrencies (Panel A) and equity indices (Panel B), 

we find that the spillover of random innovation shocks with lagged standardized errors for 

cryptocurrencies is slightly greater in the pre-Covid period than in the post-Covid period. However, 

this transformation is not present among equities; the spillover of random innovation shocks with 

lagged standardized errors is comparable in both subperiods. The comparatively weaker spillover 

effect during the post-Covid period for cryptocurrencies compared with equities is understandable as 

the downturn in the equity markets caused by the Covid-19 pandemic was a boom period for 

cryptocurrencies, at least during the first year of the Covid-19 pandemic. Therefore, connectedness 

among cryptocurrencies during this period is expected to be lower as the extant literature shows higher 

connectedness and co-movements among assets during times of market turmoil (Akhtarruzzaman et 

al., 2021; Ali et al., 2021; Bouri, Lucey, and Roubaud, 2020). In line with this inference, we find 

stronger conditional covariances for equity indices in the post-Covid period than both the pre-Covid 

period. The degree of innovation spreading from one asset to another asset in the intra-market setting 

is relatively stronger in the post-Covid period: ETH-BTC, DSH-BTC, BAT-LTC, and DSH-ETH 

among cryptocurrencies and UK-US, Japan-US, Japan-UK, and Australia-France among equity 

markets. 



 

 

Subsequently, we extend our post-Covid analysis and examine whether the degree of innovation due 

to the impact of lagged standardized errors is stronger than that due to the lagged conditional 

covariances. We find that the degree of innovation due to the impact of lagged standardized errors is 

stronger for LTC-BTC, ETH-BTC, ETH-LTC, and EOS-LTC among cryptocurrencies and UK-US, 

Germany-US, Japan-US, Australia-Germany, Japan-Germany, and Japan-Australia among equities, 

indicating more volatile returns with a low level of persistence. On the contrary, volatility 

transmissions between DSH and ETC and France and the UK are insignificant during the post-Covid 

period.  

 

Table 7. Multivariate GARCH-BEKK modeling: Volatility spillovers among cryptocurrencies and 

equity indices (intra-market spillovers).  

 Pre-Covid-19 Post-Covid-19 Full sample 

 S A B S A B S A B 

Panel A: Spillovers among the cryptocurrencies 

BTC-BTC 0.14a 1.50a 0.14b 0.18a -0.01 0.81a 0.22a -0.35a 0.69a 

LTC-BTC 0.26a 0.16b 0.03c 0.26a 0.17a -0.04a 0.66a 0.42a -0.10a 

ETH-BTC 0.08a -1.69a -0.12c 0.28a 0.47a 0.10a 0.57a 0.84a -0.07a 

DSH-BTC 0.20a -0.27b -0.16a 0.00 0.00 -0.01b 0.28a 0.00 0.02a 

EOS-BTC 0.63a 0.42a 0.01 0.50a -0.04b 0.00 0.88a -0.43a 0.07a 

TRX-BTC -4.02b 0.00 0.00 0.24a -0.19a -0.02a 0.51a 0.01a 0.00a 

BAT-BTC -0.03 0.19b 0.26a 0.15a -0.12a -0.08a 0.46a 0.03a 0.04a 

LTC-LTC 0.25a -0.37b 0.13a -0.07a -0.13a 0.93a 0.01 0.81a 0.83a 

ETH-LTC -0.05c 0.29 -0.78a -0.01 0.52a -0.09a 0.11a 1.60a -0.77a 

DSH-LTC -0.11a 0.01 0.02 -0.11a 0.03a 0.02a -0.38a 0.01a -0.01 

EOS-LTC -0.25a 1.14a 0.04 -0.22a -0.01 -0.16a -0.72a -0.85a 0.09a 

TRX-LTC 0.24 -0.01 -0.01a -0.16a -0.19a 0.09a -0.25a 0.02a 0.00a 

BAT-LTC 0.26a -1.92a 0.22a -0.16a -0.19a -0.19a -0.57a 0.09a -0.01 

ETH-ETH 0.10a -0.84a 0.03 0.01b 0.64a 1.05a 0.09a 1.49a 0.47a 

DSH-ETH 0.08b -0.21 -0.39a -0.06b 0.01c 0.00 0.39a 0.00b 0.03a 

EOS-ETH 0.13 0.23b 0.15a 0.02 -0.07a -0.05a 0.03a -0.94a 0.04a 

TRX-ETH 9.22a 0.00b -0.01a 0.02 -0.26a -0.02b 0.18a 0.00 0.00 

BAT-ETH 0.08 0.05 0.18a 0.41a -0.11b -0.14a 0.21a 0.03b 0.02a 

DSH-DSH 0.00 -1.76a 0.09c 0.00 1.36a 0.01 0.05 2.20a -0.14a 

EOS-DSH 0.00 0.88a -0.01 0.00 -1.09a 0.21a 0.06 0.53a 0.39a 

TRX-DSH 0.00 0.00 0.00a 0.00 -2.24a 0.06c 0.04 -0.01 -0.01a 

BAT-DSH 0.00 0.54a 0.12a 0.00 -0.39a -0.29a 0.01 0.13b -0.46a 

EOS-EOS 0.00 1.74a 0.58a 0.00 -0.29a 0.75a 0.09a -1.48a 0.58a 

TRX-EOS 0.00 0.02a 0.01a 0.00 -0.27a 0.24a 0.05b -0.03a 0.00b 

BAT-EOS 0.00 0.33 0.07 0.00 -0.49a -0.18a 0.08a 0.77a 0.21a 

TRX-TRX 0.00 -0.41a 0.09 0.00 -0.52a 0.94a 0.00 3.34a 0.42a 

BAT-TRX 0.00 26.72a 2.57 0.00 -0.36a -0.25a 0.02 0.08b 0.05a 

BAT-BAT 0.00 0.52a 0.19a -0.01 1.61a -0.20a -0.12a -0.76a 0.37a 

Panel B: Spillovers among the equity indices 



 

 

US-US 0.00a 1.20a 0.68a 0.00a -0.33a 1.19a 0.01a 0.06a 0.46a 

UK-US 0.00a -0.71a -0.22b 0.00 0.37a -0.16a 0.01a -0.39a 0.37a 

FR-US 0.00a 0.67a -0.06 0.00a -0.11a 0.02c 0.03a 0.08a -0.22a 

GER-US 0.00a 0.37a 0.36a 0.00b 0.07 -0.17a 0.01a -0.10a 0.02a 

AUS-US 0.00a 0.29b -0.20b 0.00 0.15a 0.19a 0.01a -0.58a 0.27a 

JP-US 0.00a -0.67a -0.22a 0.01a -0.03 -0.26a 0.01a -0.06a -0.15a 

UK-UK 0.00 -0.31a 0.08 0.00a 0.13b 0.75a 0.00a 0.30a 0.76a 

FR-UK 0.00b 0.02 0.21 0.00b 0.02c -0.01c 0.00 0.12a -0.10a 

GER-UK 0.00 0.91a -0.36 0.00b -0.30a -0.17a 0.00a -0.24a 0.17a 

AUS-UK 0.00c 0.46a -0.46b 0.00a -0.20a -0.13a 0.00a -0.68a -0.05a 

JP-UK 0.00 -0.47a 0.05 0.00 -0.16a -0.08a 0.00a -0.07a 0.17a 

FR-FR 0.00 0.79a 0.34b 0.00 0.36a 0.46a -0.01a 0.44a 0.51a 

GER-FR 0.00 0.24c 0.42 0.00 -3.86a 0.60a 0.00a -2.14a -0.75a 

AUS-FR 0.00 -0.29 -0.66a 0.00 0.47a 0.66a 0.00 0.22a 0.83a 

JP-FR 0.00 -0.59a -0.22b 0.00 -1.37a -0.35a 0.01a -0.75a -0.05c 

GER-GER 0.00 0.64a 0.48b 0.00 -0.34a 0.76a 0.00c -0.09a 0.78a 

AUS-GER 0.00 0.13 -0.77a 0.00 0.20a -0.06b 0.00 -0.09a 0.06a 

JP-GER 0.00 -0.30b -0.10 0.00 -0.03 -0.21a 0.00b -0.23a 0.11a 

AUS-AUS 0.00 0.02 0.14 0.00 0.24a 0.80a 0.00 0.74a 0.89a 

JP-AUS 0.00 -0.19b -0.25a 0.00 0.04 -0.09a 0.00b -0.04a -0.08a 

JP-JP 0.00 -0.27b 0.39a 0.00 -0.06 0.63a 0.00 0.17a 0.77a 

Notes: This table reports the results of the multivariate GARCH-BEKK model, which examines spillovers among 

cryptocurrencies (Panel A) and among equity indices (Panel B). S denotes sigma, i.e., the upper triangular matrix, 

whereas A and B denote Matrix A and Matrix B respectively. Matrix A shows the impact of lagged standardized errors 

measuring the degree of innovation spreading from one asset to another asset, whereas Matrix B represents lagged 

conditional co-variances measuring persistence in conditional volatility spreading from one stock market to another 

stock market. a, b, and c indicate the level of significance at the 1%, 5%, and 10% level. Subperiods and variables are 

defined in Table 1. 

 

The results of cross-mean spillover effects between cryptocurrencies and equity indices in Table 8 

indicate significant cross-mean spillover in most cases during the post-Covid and full sample periods. 

In the pre-Covid period, however, nearly half of the cross-mean spillovers are insignificant: significant 

for equities-BTC, equities-LTC, and equities-ETH and insignificant for equities-EOS, equities-TRX, 

and equities-BAT. The cross-mean spillover effect between DSH and equity indices during the pre-

Covid period is significant in 6 out of 4 cases. Germany-DSH and Australia-DSH are exceptions. A 

comparison between pre- and post-Covid periods shows that the mean spillover effects have 

substantially increased during the Covid period where insignificant spillover effects only exist in 8 of 

42 combinations: US-ETH, UK-DSH, France-DSH, Australia-DSH, Japan-DSH, UK-BAT, Australia-

BAT, and Japan-BAT. Moreover, the degree of innovation spreading from one market to another 

market is likewise relatively stronger in the post-Covid period between France-BTC, Germany-BTC, 

Australia-BTC, Japan-BTC, US-LTC, UK-LTC, France-LTC, Germany-ETH, Australia-ETH, UK-

DSH, France-DSH, Japan-DSH, France-EOS, Germany-EOS, Australia-EOS, US-TRX, UK-TRX, 

France-TRX, UK-BAT, France-BAT, and Germany-BAT. Note that the variance-covariance matrix A 

shows coefficients of ARCH effects that infer lagged standardized errors and estimate the degree of 

innovation from the ith to the jth assets of different classes.  



 

 

Table 8. Multivariate GARCH-BEKK modeling: Volatility spillovers between cryptocurrency and 

equity markets (cross-market spillovers).  

Assets 
Pre-Covid-19 Post-Covid-19 Full sample  

S A B S A B S A B 

US- BTC 0.00a 156.74 a -2.55 c 0.01 a 2.24 a -0.30 a 0.01 a 2.51 a 0.02 

UK- BTC 0.00 a 25.22 a -10.32a 0.01 a -1.72 a -0.32 a 0.01 a -0.20 a 0.99 a 

FR- BTC 0.00 a -16.25 a -11.57a 0.03 a -0.47 a -0.14 a 0.00 0.25 a -0.07 a 

GER- BTC 0.00 a -68.37 a 12.75a 0.01 a -0.87 a 0.93 a 0.01 a 1.71 a 0.61 a 

AUS- BTC 0.00 a -74.99 a 23.93a 0.00 -5.42 a -0.14 a 0.02 a -3.37 a -0.99 a 

JP- BTC 0.00 a -70.77 a -14.39a 0.01 a 1.05 a 0.12 a 0.01 a 1.02 a 0.40 a 

US- LTC 0.00 a -16.90 12.42a 0.00 a 20.60 a 2.44 a 0.00 a 16.47 a -4.56 a 

UK- LTC 0.00 a -54.86 a -44.52a 0.00 a -14.72 a 2.56 a 0.00 -8.89 a 1.75 a 

FR- LTC 0.00 a -128.07 a 1.70 -0.03 a -7.03 a -0.76 a 0.00  0.91 a 0.09 

GER- LTC 0.00 a 44.47 a -23.64 a 0.00 a 6.84 a 1.36 a 0.00 a -19.49 a -0.44 a 

AUS- LTC 0.00 a 52.52 a 9.14 b 0.00 a -5.31 a 1.95 a 0.00 a -9.19 a 1.33 a 

JP- LTC 0.00 a 91.90 a 9.79 a 0.00 a -6.33 a -1.07 a 0.00 14.87 a 2.24 a 

US- ETH 0.00 a 8.63 b 3.67 b 0.00  -1.20 a -1.71 a 0.00 a -6.05 a -0.63 a 

UK- ETH 0.00 a 27.37 a -9.62 a 0.00 a 0.62 a 1.57 a 0.00 a 0.89 a -2.56 a 

FR- ETH 0.00 a -4.70 7.02 a -0.03 a 1.23 a -0.91 a -0.01 a -1.27 a 1.25 a 

GER- ETH 0.00 a -28.82 a 6.39 a 0.00 a -0.41 a 0.56 a 0.00 -0.97 a 4.13 a 

AUS- ETH 0.00 a -39.41 a -2.48 0.00 c 0.05  0.22 a 0.00 a -10.54 a -0.42 a 

JP- ETH 0.00 a 8.15 c -12.46 a 0.00 a -4.27 a 1.63 a 0.00 a -1.73 a -1.57 a 

US- DSH 0.00 a 6.13  -0.09 0.00 a -20.15 a 2.13 a 0.01 a -72.14 a 4.12 a 

UK- DSH 0.00 a 2.00  -2.68 0.00 59.40 a -4.44 a 0.00 a -24.99 a 2.11 a 

FR- DSH 0.00 a -49.27 a 0.82 0.00 -6.53 a -0.53 a 0.00 -1.30 b 2.50 a 

GER- DSH 0.00 20.23 a -10.72 a 0.00 a -155.06 a 6.99 a 0.01 a 1.28 -9.59 a 

AUS- DSH 0.00 43.20 a 29.57 a 0.00 42.41 a -0.64 a 0.00 a 25.17 a -1.47 a 

JP- DSH 0.00 a -22.23 a -11.28 a 0.00 38.61 a -1.91 a 0.00 a 132.49 a 4.19 a 

US- EOS 0.00 33.84 a -1.44 -0.01 a -38.47 a -3.68 a -0.01 a -15.33 a -3.68 a 

UK- EOS 0.00 106.11 a -12.08 -0.01 a 18.91 a 1.28 a -0.01 a 7.21 a 4.62 a 

FR- EOS 0.00 -28.39 a -16.16 -0.02 a 3.71 a -3.15 a -0.02 a -6.74 a 0.69 a 

GER- EOS 0.00 -162.86 a -0.37 -0.01 a 17.59 a 2.02 a -0.01 a -21.64 a -5.42 a 

AUS- EOS 0.00 -35.68 c 39.46 a 0.00 a 8.94 a 3.30 a -0.01 a 1.12 a -2.03 a 

JP- EOS 0.00 30.43 b -7.79 b 0.00 a -18.69 a 3.91 a -0.01 a 42.99 a 8.05 a 

US-TRX 0.00 -248.85 a 43.42 0.00 a 23.99 a 4.84 a -0.01 a -42.52 a 4.71 a 

UK-TRX 0.00 -139.65 a -8.61 0.00 a 23.45 a -1.34 a 0.00 -54.73 a -0.81 b 

FR-TRX 0.00 -203.07 a -70.06 0.01 b -0.98 a -1.70 a 0.01 b -14.87 a 0.41 a 

GER-TRX 0.00 214.24 a -416.72 a 0.01 a -52.82 a -0.87 a 0.00 b 104.18 a -5.01 a 

AUS-TRX 0.00 277.02 a 636.27 a 0.00 b -0.11 0.60 a 0.00 c -7.66 a -0.84 a 

JP-TRX 0.00 383.65 a -107.02 0.00 a 28.56 a 1.99 a 0.00 a 15.05 a 3.80 a 

US-BAT 0.00 45.64 a 12.67 a 0.00 a -2.72 a -3.54 a 0.00 a 7.35 a 5.20 a 

UK-BAT 0.00 -5.42 -28.89 a 0.00 4.67 a 3.16 a 0.00 b 5.55 a -6.64 a 

FR-BAT 0.00 -28.52 a 6.96 a -0.01 c -6.78 a 0.68 a 0.00 3.67 a 1.62 a 

GER-BAT 0.00 -93.22 a -7.54 a 0.00 a 2.48 a -2.40 a 0.00 a -5.28 a 3.19 a 

AUS-BAT 0.00 83.53 a 5.54 0.00 9.56 a -1.41 a 0.01 a 16.88 a -4.46 a 



 

 

JP-BAT 0.00 75.26 a -13.62 a 0.00 -5.98 a 5.60 a 0.00 a 6.05 a 1.88 a 

Notes: This table reports the results of the multivariate GARCH-BEKK model, which examines spillovers between 

cryptocurrencies and equity indices. All the variables and subperiods are defined in Table 1 and Table 6. 

 

The cross-market spillover and its persistence among the assets is significant in all cases in the post-

Covid period. In this analysis, matrix B examines the lagged conditional covariance and estimates the 

inter-market spillover and its persistence among the assets under consideration: a significant GARCH 

coefficient shows that a portion of the realized conditional covariances of one asset spillovers to the 

current period conditional covariance of the other asset. 

Another important aspect is to understand whether the degree of innovation due to the impact of lagged 

standardized errors is stronger than that due to the lagged conditional covariances. Table 8 shows that 

the degree of innovation due to the impact of lagged standardized errors is stronger than that of lagged 

conditional covariances in the following combinations of assets during the post-Covid period: US-

BTC, US-LTC, Germany-LTC, UK-EOS, France-EOS, Germany-EOS, Australia-EOS, France-ETH, 

UK-DSH, Japan-DSH, Australia-DSH, US-TRX, UK-TRX, Japan-TRX, Germany-BAT, and 

Australia-BAT. A synthesis of pre- and post-Covid results reveals that a stronger impact of lagged 

standardized errors than lagged conditional covariances on the degree of innovation is stronger in the 

post-Covid period.  

Finally, Table 8 shows significant spillovers of conditional volatility between all the inter-class assets 

under study during the sample period, except US-BTC and France-LTC. However, in the post-Covid 

period, spillover of conditional volatility among the assets studied is significant in all cases without 

any exception. If we compare these results with the pre-Covid period, there are numerous insignificant 

spillovers of conditional volatility, including France-LTC, Australia-ETH, US-DSH, UK-DSH, 

France-DSH, US-EOS, Germany-EOS, US-TRX, UK-TRX, France-TRX, Japan-TRX, and Australia-

BAT. Our results thus far indicate stronger spillovers of cross-mean effects, cross-market innovations, 

and conditional volatility across all assets during the Covid period than the pre-Covid period, indicating 

a stronger integration and transmission of information between the assets after the onset of Covid-19.   

 

4.4. Volatility connectedness using the TVP-VAR approach 

This section discusses the results of static and dynamic volatility connectedness indices. We begin our 

analysis by looking at the static connectedness, results are presented in Table 9. A negative (positive) 

net value of connectedness indicates that the asset of our interest is a net receiver (transmitter) of 

volatility within the network. 

The total connectedness index (TCI) in the post-Covid period, 80.84%, is relatively higher than the 

TCI in the pre-Covid period, 79.75%, indicating an elevated connectedness among the assets during 

Covid. TCI in the full sample period is similarly high, 80.72%, implying a high volatility dependence 

in the network. The elements in the main diagonal, corresponding to own-innovations, show that the 

highest (lowest) value in the pre-Covid period is 29.98 (15.22) for EOS (UK), indicating that 29.98% 

(15.22%) of the forecast error variance of EOS (UK) can be ascribed to own-innovations whereas the 

remaining error can be ascribed to other assets’ influence. Likewise, while examining own-innovations 

during the post-Covid period, the highest (lowest) value is 26.05 (16.42) for BAT (Germany).   



 

 

 

Table 9. Static connectedness between equity indices and cryptocurrencies 
 US UK FR GER AUS JP BTC LTC ETH DSH EOS TRX BAT FROM 

Panel A: Full sample 

US 16.48 13.23 10.4 13.86 11.97 11.55 3.91 3.09 4.66 2.8 2.54 2.95 2.61 83.52 

UK 12.08 16.71 12.4 14.99 11.58 11.1 3.77 3.03 4.43 2.51 2.33 2.52 2.57 83.29 

FR 11.13 14.75 16.3 14.89 10.98 10.35 3.82 3.16 4.29 2.51 2.47 2.55 2.78 83.68 

GER 12.49 14.63 12.6 16.49 11.4 10.94 3.92 3.12 4.52 2.5 2.35 2.51 2.53 83.51 

AUS 12.39 12.53 10.9 12.84 17.68 11.3 3.92 3.18 4.88 2.59 2.49 2.81 2.48 82.32 

JP 12.23 12.63 10.4 13.12 11.76 18.53 3.86 3.07 4.35 2.5 2.44 2.45 2.71 81.47 

BTC 3.5 4.07 3.44 4.01 3.19 3.81 17.6 9.41 13.42 9.94 10.1 9.49 7.98 82.38 

LTC 3.55 4.32 3.63 4.32 3.55 4.22 11 21.28 10.72 8.37 9.4 8.88 6.78 78.72 

ETH 3.84 4.37 3.33 4.21 3.84 4.19 12.4 8.91 17.84 8.78 10.3 10.95 7.04 82.16 

DSH 3.39 3.66 2.91 3.25 2.85 3.45 8 7.55 8.66 24.8 12.9 9.86 8.76 75.23 

EOS 2.85 3.66 2.98 3.44 2.4 3.24 9.86 8.59 10.62 12 20 11.29 9.09 80.02 

TRX 3.61 4.2 3.5 4.03 3.37 3.83 8.87 7.58 9.92 9.3 10.7 22 9.14 78 

BAT 3.22 4 4.02 3.81 2.57 3.32 8.31 7.47 8.92 9.03 10.1 10.28 24.97 75.03 

TO 84.26 96.05 80.4 96.76 79.46 81.3 81.6 68.16 89.39 72.8 78.1 76.54 64.49 1049.33 

Inc. Own 100.8 112.8 96.7 113.3 97.14 99.83 99.2 89.44 107.2 97.6 98.1 98.54 89.46 cTCl//TCl 

NET 0.75 12.75 -3.28 13.25 -2.86 -0.17 -0.78 -10.6 7.23 -2.4 -1.93 -1.46 -10.5 87.44//80.72 

NPT 8 10 6 11 6 5 6 1 10 4 5 6 0  

Panel B: Pre-Covid-19 

US 18.12 10.03 11.8 14.76 12.15 11.47 1.76 3.12 4.86 1.56 2 5.55 2.78 81.88 

UK 12.59 15.22 12.1 14.8 12.14 12.59 1.73 2.55 4.93 2.08 1.41 4.49 3.4 84.78 

FR 13.05 12.99 15.7 15.36 12.19 10.96 1.27 2.49 4.56 1.71 1.04 5.1 3.57 84.27 

GER 13.97 11.59 12.9 16.87 12.36 12.41 1.58 2.7 4.69 2.04 1.1 4.44 3.38 83.13 

AUS 12.7 10.02 11.5 13.11 19.02 13.02 1.85 3.79 5.54 1.73 1.12 4.05 2.5 80.98 

JP 12.88 10.53 9.71 13.54 13.53 17.66 2.13 2.94 5.73 1.93 2.08 4.41 2.92 82.34 

BTC 2.5 1.29 1.47 1.52 2.1 2.44 25.8 13.69 13.41 11.2 9.27 5.05 10.34 74.24 

LTC 2.42 1.68 1.9 2.07 3.29 2.74 15.2 25.99 11.09 8.96 8.79 6.47 9.42 74.01 

ETH 4.92 4.98 3.72 4.92 7.07 7.34 8.73 9.56 17.4 7.62 6.55 9.24 7.97 82.6 

DSH 2.22 1.35 1.34 1.54 1.54 2.77 12.2 8.99 11.52 25.2 16.3 5.66 9.42 74.83 

EOS 2.62 1.03 1.16 1.09 1.06 2.81 11.3 9.03 10.54 18.6 30 3.48 7.28 70.02 

TRX 6.11 6.12 5.96 6.74 7.38 6.75 4.25 6.58 10.74 5.89 6.72 17.2 9.56 82.8 

BAT 4.33 4.65 4.54 5.46 4.71 5.53 7.16 7.89 10.17 8.69 7.54 10.23 19.09 80.91 

TO 90.31 76.24 78.1 94.94 89.51 90.82 69.2 73.34 97.8 72 63.9 68.17 72.53 1036.8 



 

 

Inc. Own 108.4 91.46 93.8 111.8 108.5 108.5 95 99.33 115.2 97.1 93.9 85.37 91.62 cTCl//TCl 

NET 8.43 -8.54 -6.19 11.8 8.53 8.49 -5.04 -0.67 15.19 -2.86 -6.13 -14.63 -8.38 86.40//79.75 

NPT 10 4 4 8 7 8 5 9 7 6 5 2 3  

Panel C: Post-Covid-19 

US 16.48 13.47 10.4 13.61 12.14 11.17 4.04 3.12 4.59 2.89 2.57 2.89 2.65 83.52 

UK 12 16.65 12.6 15.04 11.9 10.77 3.84 3.1 4.18 2.51 2.36 2.46 2.56 83.35 

FR 10.87 14.72 16.6 14.94 11.09 10.03 3.98 3.21 4.18 2.6 2.55 2.46 2.81 83.42 

GER 12.3 14.98 12.9 16.42 11.36 10.48 4.04 3.22 4.34 2.54 2.42 2.45 2.52 83.58 

AUS 12.58 12.97 11.2 12.81 17.63 11.03 3.91 3.14 4.4 2.62 2.52 2.79 2.47 82.37 

JP 11.99 12.79 10.6 12.87 11.71 18.78 3.94 3.12 4.12 2.5 2.44 2.4 2.78 81.22 

BTC 3.43 3.89 3.6 3.84 2.98 3.67 16.6 9.28 13.61 10.5 10.4 10.41 7.76 83.36 

LTC 3.44 4.07 3.64 4.18 3.37 4.1 10.7 21.01 11.02 8.7 9.71 9.63 6.4 78.99 

ETH 3.63 3.81 3.23 3.75 3.13 3.69 12.9 9.37 17.51 9.34 11 11.69 6.97 82.49 

DSH 3.38 3.55 2.98 3.13 2.86 3.35 8.08 7.77 8.86 24.7 11.5 10.93 8.94 75.3 

EOS 2.74 3.45 3.07 3.31 2.4 3.07 9.88 8.82 10.94 11.9 18.6 12.74 9.05 81.36 

TRX 3.33 3.72 3.3 3.55 3.02 3.41 9.29 7.94 9.93 10 11.5 21.96 8.99 78.04 

BAT 3.03 3.63 4.08 3.45 2.29 2.97 8.12 7.4 8.76 9.59 10.1 10.54 26.05 73.95 

TO 82.71 95.06 81.6 94.47 78.25 77.76 82.7 69.49 88.92 75.7 79.1 81.38 63.89 1050.96 

Inc. Own 99.19 111.7 98.2 110.9 95.88 96.54 99.3 90.5 106.4 100 97.7 103.3 89.94 cTCl//TCl 

NET -0.81 11.71 -1.85 10.88 -4.12 -3.46 -0.68 -9.5 6.43 0.4 -2.28 3.34 -10.1 87.58//80.84 

NPT 8 10 7 10 4 5 7 1 9 5 5 6 1  

Notes: This table presents the static analysis of the dynamic volatility spillovers between the selected equity indices and cryptocurrencies. “From”’ in the last 

column indicates the spillover from the network of all other assets to an asset of our interest, whereas “TO” in the third last row indicates the spillover to the 

network of all other assets from the asset of our interest. “NET” in the second last row indicates the net directional spillover of each asset, whereas “TCI” in the 

bottom right corner indicates the total connectedness index of the network of all assets. All selected assets and subperiods are defined in Table and Table 6. 

 

  



 

 

The highest pairwise directional connectedness in the pre-Covid period took place from DSH to EOS 

(18.61%), followed by EOS to DSH (16.26%) and Germany to France (15.36%). On the contrary, the 

highest pairwise directional connectedness in the post-Covid period took place from Germany to the 

UK (15.04%) and ETH to BTC (13.61%), indicating a significant level of directional spillovers from 

Germany to UK and ETH to BTC. In sum, referring to inter-class asset connectedness and subperiod 

analyses, we find that connectedness in the intra-class asset examination (post-Covid period) is 

stronger than the inter-class asset setting (pre-Covid period). 

For example, the lowest pairwise directional connectedness from cryptocurrencies to equity indices in 

the pre-Covid period manifested from EOS to France (1.04%) followed by EOS to Germany (1.10%), 

whereas, in the post-Covid period, it manifested from EOS to UK (2.36%) followed by TRX to Japan 

(2.40%). Similarly, the lowest pairwise directional volatility spillover from equity indices to 

cryptocurrencies in the pre-Covid period occurred from UK to EOS (1.03%), followed by Australia to 

EOS (1.06%), whereas in the post-Covid period, it occurred from Australia to BAT (2.29%), followed 

by Australia to EOS (2.40%). To sum up, the results in Table 9 reveal three major findings: pairwise 

directional connectedness (i) among equity indices is on average stronger in the post-Covid period than 

in the pre-Covid period, (ii) among cryptocurrencies is on average stronger in the pre-Covid period 

than the post-Covid period, and (iii) from equity indices to cryptocurrencies and cryptocurrencies to 

equity indices are not only weaker than the intra-class asset connectedness but also time-varying, 

indicating several inter-market and inter-class asset diversification and hedging opportunities for 

investors. 

Both a synthesis of existing studies and our results reported thus far reveal that the connectedness 

among assets is time-variant in most cases (Ali et al., 2021, 2022, 2023, 2024). Therefore, we are 

particularly interested in observing net transmitters and net receivers of shocks, i.e., the direction of 

the volatility spillovers. Interestingly, in line with our conjecture, we find markedly diverse spillovers 

across the two subperiods. For example, while the UK and TRX (Australia and Japan) are the two main 

net receivers (transmitters) of volatility in the pre-Covid period, they are among the main net 

transmitters (receivers) of volatility in the post-Covid period. The direction of the spillovers is also 

persistent in some cases; for example, Germany (BAT) is a net transmitter (receiver) in both periods. 

As the average connectedness analysis is static in nature and ignores the evolution of these measures 

over time, it is important to examine the time-varying dynamics of these connectedness measures. In 

doing so, we begin with the total dynamic connectedness to get a bird’s-eye view of the evolution of 

volatility connectedness within the network, presented in Fig. 2. It is evident that TCI in the network 

is time-varying and reaches high levels of market interconnectedness multiple times, where the most 

prominent peak is manifested during March 2020. 

 



 

 

 

 
Fig. 2. Dynamic total volatility connectedness 

 

Thereafter, a gradual decline in the volatility connectedness is noticeable until a trough is hit in 

November 2020. Substantially high volatility connectedness values at the onset of  Covid indicate 

markedly high uncertainty among investors, possibly due to the lack of information regarding the 

disease, its contagiousness, and its ultimate impact on economies (information bias and uncertainty). 

Thus, the awareness of the virus, measures to control its transmission, news regarding the availability 

of the vaccine, and stimulus packages announced by governments around the globe to protect investors 

first caused recoveries, then advances and new peaks in many equity indices (see Fig. 1), resulting in 

a decline in the volatility connectedness later in 2020 (Apergis, Chatziantoniou, and Gabauer, 2023). 

In 2021, uncertainty began to rise again, which could be linked to the emergence of new variants of 

Covid, the prolongation of lockdowns, and the corresponding rage and concerns among people globally. 

While the interconnectedness among the assets studied in 2021 and 2022 remained lower than that of 

mid-March 2020, an increased TCI is evident during the Russia-Ukraine war in 2022. In order to 

understand the net transmission of shocks for each asset under study, which can be helpful in 

understanding the contribution of each asset in the network towards volatility connectedness, we depict 

the net total directional connectedness measures in Fig. 3. Notably, we find that most of the equity 

indices are the main transmitter, whereas the cryptocurrencies are the main receivers of shocks during 

the first year of Covid-19. Specifically, the UK and Germany are the main transmitters, whereas LTC 

is the main receiver.  

However, the evolution of net directional connectedness during 2021 and 2022 is not straightforward, 

nearly all the cryptocurrencies and equities have acted as both transmitters and receivers of volatility. 

In line with Ali et al. (2023), who revealed that most of the co-movements and diversification benefits 

among the Asian equities were short-lived, our results similarly indicate that the connectedness among 

the assets under study (possible diversification benefit) is short-lived. While Fig. 3 helps us to 

understand the net volatility transmitted or received by each asset, it does not provide pair-wise 

information. That is, a net transmitter (receiver) within the network does not necessarily mean it 

transmits to (receives from) all the assets in the network. Therefore, it is vital to examine dynamic 

pairwise connectedness and net pairwise directional connectedness. 



 

 

 

 

 
Fig. 3. Net total directional volatility connectedness 

 

Figs 4 and 5 depict the dynamic pairwise volatility connectedness and net pairwise directional 

connectedness, respectively, and show that our earlier (static) results regarding the variation in 

connectedness between the pre- and post-Covid periods and inter- and intra-class assets reported in 

Table 9 are robust. More specifically, connectedness among equities is stronger during the first half of 

Covid-19, whereas connectedness among cryptocurrencies is stronger during the second half of Covid-

19. In inter-class asset connectedness, we noticed more asymmetrical results, where high peaks were 

manifested during March-April 2020, followed by mid-2021 and 2022. In other periods, we did not 

observe any specific elevated connectedness between equities and cryptocurrencies. To sum up, we 

provide network graphs in Fig. 6 that show net pairwise connections between the assets during different 

periods. The base of the arrow from an asset specifies a net transmitter, whereas the edge of the arrow 

towards an asset specifies a net receiver in the system’s network. The diameter of the circle indicates 

the magnitude of the spillover, and a larger circle indicates a stronger directional connectedness—net 

receivers (transmitters) are highlighted in yellow (blue). Panels a, b, and c jointly show that the most 

persistent transmitters (receivers) of volatility shock are Germany and ETH (Australia, BAT, and EOS) 

as demonstrated by the outgoing arrows and blue-colored circles (incoming edges of the arrows and 

yellow-colored circles) across the three periods.  

 



 

 

 
Fig. 4. Dynamic pairwise volatility connectedness 

 

 
Fig. 5. Net pairwise directional volatility connectedness 

 

Next, we divide the post-Covid period into two subperiods and report results in Panels d and e of Fig. 

6: Germany, UK, and TRX are the main transmitters, whereas Australia, BAT, and EOS are the main 

receivers of volatility spillovers throughout the Covid period. The remaining assets under study, such 

as BTC, ETH, and LTC among cryptocurrencies and France, Japan, and the US among equity markets 

show inconsistent net-connectedness: transmitters in one period, whereas receivers in the other period 

and vice-versa. For example, LTC was the largest receiver during the first year of Covid; seven of the 

twelve assets transmitted volatility to LTC while LTC did not transmit volatility to any asset in the 

network. However, in the last half of Covid, LTC is found to be a net transmitter of volatility; only 

ETH transmits volatility to LTC while LTC transmits volatility to DSH and BAT. Variations in 

volatility connectedness over the period have also been observed for other assets including BTC, ETH, 

LTC, France, Japan, and the US.  

 



 

 

(a) Full sample (b) Pre-Covid-19 (c) Post- Covid-19 

   

(d) The first year of the Covid-19 pandemic 

(2020) 

(e) The remaining period of the Covid-19 

pandemic (2021-2022) 

  
Fig. 6. Networks graph of volatility connectedness 

 

4.5. Return connectedness using the TVP-VAR approach 

The next is to examine the return connectedness between the assets studied. We follow a similar 

exposition to present the return spillover results, i.e., starting from average dynamic connectedness in 

Table 10 followed by various graphical presentations depicting total, dynamic, net, and pairwise 

connectedness. The results in Table 10 indicate that the total return connectedness indices in subperiods 

and the full sample are lower than the corresponding volatility connectedness indices reported in Table 

9. For example, TCI of volatility in the full sample is 80.72%, whereas TCI of return in the full sample 

is 79.56%, implying a higher volatility dependence than the return dependence among the assets. 

The main diagonals of Table 10 clearly show that while own-innovation in equities is manifested in 

return connectedness, it is manifested in volatility connectedness for cryptocurrencies (Table 9). For 

example, own-innovation in the volatility connectedness during the post-Covid period is 16.48% 

(16.65%) for the US (UK) market, whereas it is 20.21% (21.40%) in the return connectedness. On the 

contrary, own-innovation in the volatility connectedness during the post-Covid period is 21.01% 

(26.05%) for LTC (BAT), whereas it is 18.07% (23.64%) in the return connectedness.   



 

 

Table 10. Static return connectedness between equity indices and cryptocurrencies. 

 US UK FR GER AUS JP BTC LTC ETH DSH EOS TRX BAT FROM 

Panel A: Full sample 

US 20.17 10.19 10.74 12.55 11.24 11.56 3.84 3.60 4.25 2.93 3.32 2.64 2.97 79.83 

UK 10.43 21.35 14.08 13.66 10.87 9.82 2.87 3.13 3.23 2.91 2.60 2.52 2.53 78.65 

FR 10.70 13.31 20.90 15.09 10.10 10.03 2.99 3.00 3.37 2.65 2.76 2.51 2.58 79.10 

GER 12.26 12.69 14.48 20.08 10.88 10.41 3.03 2.81 3.38 2.57 2.61 2.39 2.41 79.92 

AUS 12.61 11.32 11.41 12.42 21.83 10.06 3.20 2.92 3.48 2.75 2.67 2.66 2.67 78.17 

JP 12.36 10.37 10.98 11.57 9.78 21.68 3.72 3.67 4.15 3.11 3.27 2.57 2.80 78.32 

BTC 3.61 2.80 3.07 3.31 2.68 3.26 18.86 13.18 12.57 9.36 10.69 8.77 7.83 81.14 

LTC 3.22 2.63 2.85 2.76 2.43 2.96 12.22 17.98 12.19 10.50 12.26 9.40 8.59 82.02 

ETH 3.58 2.67 3.06 3.18 2.62 3.46 12.03 12.67 18.27 9.52 10.77 9.31 8.87 81.73 

DSH 2.92 2.65 2.71 2.77 2.61 2.88 9.55 11.75 10.20 21.04 12.48 9.83 8.59 78.96 

EOS 2.98 2.18 2.78 2.85 2.50 3.10 10.13 12.49 10.87 11.27 18.62 10.81 9.42 81.38 

TRX 3.06 2.32 2.66 2.74 2.63 3.13 9.26 10.88 10.78 9.86 12.27 20.85 9.56 79.15 

BAT 2.96 2.64 2.90 2.95 2.38 2.78 8.45 10.16 10.33 9.18 11.14 10.03 24.11 75.89 

TO 80.70 75.76 81.71 85.84 70.72 73.46 81.28 90.27 88.78 76.61 86.86 73.45 68.83 1034.26 

Inc.Own 100.87 97.11 102.61 105.92 92.55 95.14 100.13 108.25 107.05 97.65 105.48 94.30 92.93 cTCl//TCl 

NET 0.87 -2.89 2.61 5.92 -7.45 -4.86 0.13 8.25 7.05 -2.35 5.48 -5.7 -7.07 86.19//79.56 

NPT 4.00 3.00 9.00 10.00 0.00 2.00 7.00 12.00 11.00 6.00 8.00 3.00 3.00  

Panel B: Pre-Covid-19 

US 21.25 11.30 15.24 14.96 12.53 10.30 1.75 2.28 2.37 1.91 2.01 3.06 1.03 78.75 

UK 13.47 23.54 13.11 15.05 11.68 6.68 1.64 2.56 2.52 1.87 2.65 3.59 1.65 76.46 

FR 15.97 11.33 22.61 16.82 11.42 9.33 1.22 2.06 1.94 1.38 1.80 2.54 1.58 77.39 

GER 16.30 13.26 16.67 21.98 10.53 12.00 0.77 1.24 1.06 1.04 1.30 2.74 1.11 78.02 

AUS 15.84 11.54 15.60 13.26 24.93 8.90 1.10 1.33 1.08 0.87 1.11 2.14 2.32 75.07 

JP 13.63 8.09 12.45 14.95 10.34 26.18 2.33 2.36 2.14 2.03 2.78 1.60 1.13 73.82 

BTC 2.30 1.78 1.83 1.71 2.12 1.02 20.72 14.23 14.27 12.78 13.29 8.91 5.04 79.28 

LTC 2.38 1.34 1.56 1.24 1.85 0.89 12.86 18.77 15.24 13.61 14.89 8.98 6.39 81.23 

ETH 2.19 1.05 1.71 1.10 1.02 0.62 12.83 15.14 18.58 14.70 14.67 9.44 6.94 81.42 

DSH 2.15 1.06 1.33 1.13 1.61 0.81 11.82 14.27 15.13 19.14 14.81 9.43 7.29 80.86 

EOS 2.05 1.17 1.68 1.32 1.20 0.54 11.98 15.07 14.98 14.71 19.13 9.29 6.88 80.87 

TRX 3.76 3.06 2.47 2.84 2.83 1.13 8.95 11.74 10.59 10.63 11.97 24.44 5.60 75.56 

BAT 2.12 1.83 1.75 1.51 1.80 0.74 6.10 10.55 11.00 12.37 11.34 6.84 32.04 67.96 

TO 92.16 66.80 85.40 85.88 68.94 52.96 73.36 92.83 92.32 87.90 92.63 68.56 46.97 1006.70 

Inc.Own 113.41 90.34 108.02 107.86 93.87 79.14 94.08 111.59 110.90 107.04 111.76 92.99 79.00 cTCl//TCl 



 

 

NET 13.41 -9.66 8.02 7.86 -6.13 -20.86 -5.92 11.59 10.90 7.04 11.76 -7.01 -21.00 83.89//77.44 

NPT 11.00 3.00 5.00 10.00 7.00 0.00 3.00 9.00 11.00 6.00 7.00 4.00 2.00  

Panel C: Post-Covid-19 

US 20.21 9.81 10.31 12.35 11.18 11.51 3.98 3.78 4.51 3.12 3.49 2.67 3.09 79.79 

UK 9.93 21.40 14.20 13.74 10.82 9.87 2.90 3.18 3.22 3.07 2.55 2.50 2.62 78.60 

FR 10.13 13.44 20.79 15.04 9.99 9.90 3.12 3.16 3.53 2.82 2.89 2.55 2.65 79.21 

GER 11.83 12.72 14.36 20.07 11.04 9.93 3.19 2.94 3.57 2.72 2.72 2.40 2.50 79.93 

AUS 12.36 11.19 11.03 12.52 21.48 10.17 3.35 3.14 3.75 2.82 2.84 2.70 2.65 78.52 

JP 12.08 10.35 10.76 10.96 9.85 21.55 3.84 3.85 4.41 3.31 3.38 2.67 2.96 78.45 

BTC 3.66 2.79 3.08 3.41 2.71 3.38 18.88 13.19 12.36 9.41 10.32 8.76 8.03 81.12 

LTC 3.22 2.66 2.95 2.80 2.45 3.09 12.17 18.07 11.81 10.62 11.90 9.56 8.71 81.93 

ETH 3.70 2.76 3.13 3.31 2.77 3.71 11.90 12.42 18.44 9.30 10.21 9.34 9.01 81.56 

DSH 3.02 2.79 2.83 2.88 2.67 3.09 9.50 11.69 9.65 20.53 12.42 10.04 8.88 79.47 

EOS 3.02 2.18 2.88 2.98 2.62 3.29 9.72 12.13 10.25 11.43 18.78 11.15 9.56 81.22 

TRX 3.02 2.21 2.61 2.69 2.60 3.24 9.08 10.83 10.64 10.10 12.44 20.60 9.93 79.40 

BAT 2.90 2.70 2.91 3.02 2.35 2.81 8.51 10.09 10.17 9.27 11.09 10.55 23.64 76.36 

TO 78.88 75.61 81.06 85.71 71.05 74.00 81.25 90.39 87.87 78.00 86.26 74.89 70.59 1035.56 

Inc.Own 99.09 97.01 101.84 105.78 92.53 95.55 100.14 108.46 106.31 98.52 105.04 95.49 94.23 cTCl//TCl 

NET -0.91 -2.99 1.84 5.78 -7.47 -4.45 0.14 8.46 6.31 -1.48 5.04 -4.51 -5.77 86.30//79.66 

NPT 4.00 3.00 7.00 10.00 0.00 2.00 8.00 12.00 11.00 6.00 9.00 3.00 3.00  

Notes: This table presents the static analysis of the dynamic return spillovers between the selected equity indices and cryptocurrencies. “From”’ in the last 

column indicates the spillover from the network of all other assets to an asset of our interest, whereas “TO” in the third last row indicates the spillover to the 

network of all other assets from the asset of our interest. “NET” in the second last row indicates the net directional spillover of each asset, whereas “TCI” in the 

bottom right corner indicates the total connectedness index of the network of all assets. All selected assets, and subperiods are defined in Table and Table 6. 

 

  



 

 

Based on the synthesis of Panels A, B, and C of Table 10, which indicate comparatively higher 

connectedness values in the post-Covid period, we give more importance to the results of the post-

Covid period, which cover the most recent period that may help in optimizing ongoing portfolio 

allocation (Ali, Sensoy, and Goodell, 2023). The highest pairwise (off-diagonal) directional return 

connectedness among equities occurred from Germany to France (15.04%), whereas among 

cryptocurrencies it occurred from LTC to BTC (13.19%). Similar to inter-asset volatility 

connectedness, inter-asset return connectedness is weaker than intra-asset class return connectedness. 

The highest directional return connectedness from equities to cryptocurrencies is evident from Japan 

to ETH (3.71%), whereas the highest return connectedness from cryptocurrencies to equities is evident 

from ETH to the US (4.51%). Overall, the results in Table 10 and Figs. A3 and A4 suggest that 

spillovers from equity indices to cryptocurrencies and vice versa are weaker than the spillovers within 

equity indices or cryptocurrencies, indicating several cross-market/cross-asset diversification 

opportunities. 

As the average connectedness analysis is static and ignores the evolution of the connectedness over 

time, we extend our analysis and present a bird’s-eye-view of the evolution of return connectedness in 

Fig. 7. The most prominent peak in the return connectedness is manifested during March 2020, 

followed by a gradual decline with multiple ups and downs until a trough is hit in February 2021. 

Different from the volatility connectedness where uncertainty began to elevate again in 2021, the return 

connectedness did not elevate noticeably until the Russia-Ukraine war in February 2022. Thus, our 

results indicate higher return and volatility connectedness during the Russia-Ukraine war period.   

Fig. 8 presents the net total directional connectedness of each asset in the network towards return 

spillovers and shows that most of the equity indices (cryptocurrencies) are net transmitters (receivers) 

of return spillovers during the first half of the Covid period. On the contrary, most of the equity indices 

(cryptocurrencies) are the net receivers (transmitters) of return spillovers during the 2021-2022 period. 

Interestingly, the results of pairwise connectedness presented in Fig. 9 and net directional 

connectedness presented in Fig. 10 are largely similar to the results presented in Fig. 4 and Fig. 5, 

respectively: intra-class asset connectedness is higher than inter-class asset connectedness on average. 

 

 
Fig. 7. Dynamic total return connectedness 



 

 

 

 

 
Fig. 8. Net total directional return connectedness 

 

The other important takeaway is the evolution of connectedness, while inter-class asset connectedness 

is weaker than intra-class connectedness, the onset of Covid and the Russia-Ukraine war elevated the 

connectedness. This result validates the findings of other studies that report increased correlation 

among assets during periods of market turmoil (Akhtarruzzaman et al., 2021; Ali et al., 2022, 2024; 

Goodell and Goutte, 2021). To summarize our main results and achieve conclusive urgings, we present 

network graphs in Fig. 11. Panels a, b, and c of Fig. 11 show that the most persistent transmitters of 

return spillover are EOS, ETH, France, Germany, and LTC, whereas the most persistent receivers of 

slipovers are Australia, Japan, UK, BAT, and TRX in the network. The consistency of the direction of 

spillovers in the full sample indicates their independence from exogenous shocks caused by Covid and 

Russia-Ukraine conflicts. While further exploring the post-Covid period in Panels d and e of Fig. 11, 

we find that ETH, Germany, and LTC are the main transmitters, whereas Australia, BAT, TRX, and 

US are the main receivers of return spillovers during the Covid and Russia-Ukraine war periods. 

The most drastic change was found in the case of UK (BTC), which was a transmitter (receiver) of 

return spillover for six (four) assets during the first year of the Covid period, however, during the 2021-

2023 period, UK (BTC) changed its position and turned into a receiver (transmitter) of return spillover 

for nine (eight) assets in the network. In line with the findings of Ali et al. (2023), we identified some 

short-term changes that were confined to the first phase of Covid; for instance, UK among the equity 

indices and EOS among the cryptocurrencies.  



 

 

 

 
Fig. 9. Dynamic pairwise return connectedness 

 

 
Fig. 10. Net pairwise directional return connectedness 

 

(a) Full sample (b) Pre-Covid-19 (c) Post- Covid-19 

   



 

 

(d) The first year of the Covid-19 pandemic 

(2020) 

(e) The remaining period of the Covid-19 

pandemic (2021-2023) 

  
Fig. 11. Networks graph of return connectedness 

 

Referring to all panels of Fig. 11 (full sample, pre-Covid, post-Covid, first-year of Covid, and last half 

of Covid), UK (EOS) is a net receiver (transmitter) of the return spillover in all periods except the first-

half. Therefore, this study suggests practitioners must exercise caution while diversifying their equity 

and cryptocurrency investments. 

5. Conclusion, Major Findings, and Implications 

This study examines information bias, asymmetric innovation shocks and their spillovers, and return- 

and volatility connectedness between leading seven cryptocurrencies and six equity market indices in 

both inter- and intra-class asset settings using around-the-clock 5-minute high-frequency intra-day data 

inclusive of both trading and non-trading periods. The equity markets under study are the US, UK, 

Germany, France, Australia, and Japan, whereas the cryptocurrencies are Bitcoin, Litecoin, Ether, 

Dashcoin, EOS, Basic Attention Token, and Tron. The sample period spans from August 5, 2019, to 

January 31, 2023, which is a diverse period covering different market states for both asset classes, i.e., 

bull, bear, turmoil, rebound, and boom periods. Likewise, our sample period also accounts for different 

crisis events and geopolitical uncertainties, i.e., cryptocurrency/Bitcoin flash crashes, Covid-19, and 

the recent Russia-Ukraine conflict. Thus, we provide a comprehensive inter-market and both inter- and 

intra-class asset analyses offering multiple implications for investors, guidelines for policymakers, and 

future works for researchers.  

First, we find that the information bias, i.e., the leverage effect, which indicates a larger impact of 

negative news/innovations on the conditional volatility of returns than positive news/innovations of 

the same size, is stronger in equities (cryptocurrencies) during the pre-Covid (post-Covid) period. 

Since several economic relief packages were introduced by different governments across different 

countries after the onset of Covid, positive news brought stability and remarkable growth in equity 

markets lately. Thus, both positive and negative innovations equally impacted the conditional volatility 

of returns during the Covid period. Specifically, Australia, EOS, and ETH appear to be more sensitive 

to negative news than positive news in both pre- and post-Covid periods.  

Second, using GARCH-BEKK, this study finds that the degree of innovation spreading from one asset 

to other assets is relatively stronger in the post-Covid period and among intra-class asset combinations, 



 

 

specifically for ETH-BTC, DSH-BTC, BAT-LTC, and DSH-ETH among cryptocurrencies and UK-

US, Japan-US, Japan-UK, and Australia-France among equity indices. In inter-class asset settings, 

innovation shocks spreading between cryptocurrencies and equities are stronger for BTC, LTC, ETH, 

and DSH with equity indices. Third, we find that the degree of innovation due to the impact of lagged 

standardized errors compared to lagged conditional covariances in inter-class asset spillovers is 

stronger for BTC-, LTC-, ETH-, and DSH-equity combinations, followed by EOS-equities.  

Fourth, using the TVP-VAR methodology, we examine and find that return and volatility spillovers 

are time-varying. These variations are particularly pronounced at the onset of the Covid pandemic and 

the Russia-Ukraine conflict. The structure of spillovers is volatility-driven, the connectedness index 

shows higher and multiple peaks in the volatility series than in the returns series throughout the sample 

period. Germany among the equity indices transmits the highest directional volatility and return 

spillovers to the UK and France, respectively. ETH among the cryptocurrencies transmits the highest 

volatility spillover (to BTC), whereas LTC transmits the highest return spillover (BTC). Both volatility 

and return connectedness among inter-class assets are weak (less than 4.6% in any combination). The 

highest directional volatility (return) spillover from a cryptocurrency to an equity market is transmitted 

from ETH to the US, whereas the highest directional volatility spillover from an equity market to a 

cryptocurrency is transmitted from Germany to LTC (Japan to ETH). Interestingly, regarding the 

contribution of own innovations in spillovers, we find that cryptocurrencies are more connected during 

volatility shocks whereas equities are more connected during return shocks. These findings indicate 

the potential for numerous inter-market and inter-class asset diversification and hedging opportunities 

for investors. The most persistent net transmitters of volatility are Germany and ETH, whereas the 

most persistent net receivers of volatility are France, BAT, BTC, EOS, and LTC. Different from 

volatility spillovers, the most persistent net transmitters of return spillovers are France, Germany, EOS, 

ETH, and LTC, whereas the most persistent net receivers of return spillovers are Australia, Japan, UK, 

BAT, and TRX. The persistence of the direction of connectedness shows that exogenous shocks during 

the sample period caused by Covid, Bitcoin/flash-crash, cryptocurrency boom, or Russia-Ukraine war 

did not impact the net transmitter/receiver position of these assets, indicating their resilience. 

Finally, in line with Ali et al. (2023) who find that the change in diversification benefits during the 

Covid periods was temporary (short-lived) in several cases, we find that the spillover of return and 

volatility among the assets has been transformed in most cases. In addition, we find that some assets 

temporarily changed their net position during the first half of Covid, indicating investors should 

consistently look for changing behavior of volatility and return spillovers. More precisely, Bitcoin and 

Litecoin (Australia and Japan) changed their net positions from receivers (transmitters) to transmitters 

(receivers) of volatility after Covid, which persisted till the end of the sample period, indicating long-

lived recent changes in the diversification channels that are likely to persist. Similarly, France and 

Bitcoin (US) changed their net positions from receiver (transmitter) to transmitter (receiver) of return 

spillovers. Our findings, using both volatility and return connectedness, show that several (but, not all) 

of the changes in spillovers and diversification benefits and channels are long-lived. Thus, the findings 

of this study can be useful for investors to diversify their portfolios in the future; however, caution 

should be exercised while diversifying portfolios as a few short-lived changes are also evident in the 

network.   



 

 

5.1. Implications and Future Agenda 

Our findings offer important hands-on information for fund managers and investors searching for 

opportunities to diversify their portfolios internationally across different markets and asset classes. The 

leverage effect that indicates the response towards positive and negative news and the knowledge 

regarding asymmetric innovation shocks may guide market participants in timely rebalancing 

portfolios. Given that increased volatility and spillovers of return or volatility shocks to other assets 

indicate higher risks, the findings of this paper are useful for international portfolio managers and 

investors (both high and low-risk appetite investors) to accordingly diversify their portfolios. One 

important limitation of this study is the selection of assets: While the assets under study account for a 

substantially large market share of equity and cryptocurrency markets, there are other cryptocurrencies, 

equity indices, and assets that can be considered. For instance, oil is an essential input for economic 

growth, and a potential portfolio diversifier, and high-frequency data is available for crude oil; thus, 

future studies may extend this work by including the high-frequency price information of the oil market. 

Most importantly, our sample includes equity markets from different regions where trading and non-

trading periods (both trading hours and trading days) are different and we aim to examine 

comprehensive real-time (using standardized time, GMT, not day-end prices) bidirectional return and 

volatility spillovers (both asymmetric and symmetric) across all the assets (both equity indices and 

cryptocurrencies), it was not possible to distinguish trading and non-trading periods as they 

substantially differ. For example, the trading hours and days in Japan and Australia are noticeably 

different than in the US and Europe, indicating that considering a uniform trading period is unrealistic. 

Thus, examining trading and non-trading periods, possible by segregating equities into different 

regions (US, Europe, and Asia-Pacific), will offer new insights and enhance our understanding of how 

different markets and assets interact with each other during trading and non-trading periods.  
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