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1 Introduction

Research on option pricing frequently centers around the question of what drives the variation

in option returns. Contradicting the view that options are redundant assets (Black and Scholes,

1973), the literature finds that option returns are driven by factors other than simply their exposure

to variations in the underlying. Specifically, a growing strand of literature documents patterns in

option returns that can be attributed to characteristics of the underlying. For example, Goyal and

Saretto (2009) find that the difference between the historical volatility of the underlying and its

implied volatility predicts delta-hedged stock option returns. Hu and Jacobs (2020) find a significant

relationship between the return of a stock option and its volatility, while Cao and Han (2013)

document that the idiosyncratic volatility of the underlying is a cross-sectional predictor for option

returns. Zhan et al. (2022) test the predictability of stock option returns using ten well-known

stock return anomalies and find that these have significant predictive power. Bali et al. (2023) test

the 94 stock characteristics used in Green et al. (2017) and Gu et al. (2020) and find similar results.

Beyond the underlying’s characteristics, the literature finds that option characteristics themselves

have predictive power. Boyer and Vorkink (2014) show a negative relationship between the option

implied skewness and option returns. Relatedly, Christoffersen et al. (2018) and Kanne et al. (2023)

document a significant relation between liquidity and option returns. Vasquez (2017) finds that

the difference in long-term and short-term implied volatility predicts delta-hedged option returns

and Ruan (2020) documents that the volatility of the implied volatility is a significant predictor.

Recently, Heston et al. (2022) find a momentum effect in option returns and Käfer et al. (2023)

show that option momentum originates from factor momentum in option-based factors.

The expanding body of literature on option return predictability suggests that, like in the

equity or bond markets, there are numerous signals that are potentially informative about fu-

ture returns. As it is common in other asset classes (Fama and French, 1993, 2015; Hou et al.,

2020), researchers aim to capture the cross-sectional patterns in option returns by assuming low-

dimensional factor models: Horenstein et al. (2022) use the risk-premium principal component
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analysis (RP-PCA) proposed by Lettau and Pelger (2020) to uncover the factor structure in stock

option returns and find that a three-factor model including the equally weighted market portfo-

lio, a historical-minus-implied volatility, and a volatility-of-volatility-factor best approximates the

principal components. Bali et al. (2022) find that a six-factor model including the market fac-

tor, a stock price, option price, implied-minus-realized volatility, implied-minus-realized skewness,

and implied-minus-realized kurtosis factor best captures the variation in option returns. Karakaya

(2014) proposes a level, maturity slope, and moneyness skewness factor and Frazzini and Pedersen

(2022) show that a betting-against-beta factor is priced in the cross-section. Büchner and Kelly

(2022) estimate a conditional latent factor model using instrumented principal component analy-

sis (IPCA) for S&P500 index option returns and find that a three-factor model best captures the

return variation in delta-hedged options. They show that the identified latent factors are highly

correlated with the level, moneyness skewness, and maturity slope factors proposed in Karakaya

(2014); however, they capture information beyond the three observable factors.

In light of the large number of predictable patterns in the cross-section of option returns, it

is essential to identify the signals that truly provide incremental information for future option

returns. Independently of the respective asset class studied, the no-arbitrage condition that all

alphas equal zero implies the existence of a stochastic discount factor (SDF) Mt that satisfies the

condition Et−1 [Mtft] = 0, with ft denoting an L× 1 vector of factor returns at time t. The Euler

equation and the absence of arbitrage are the motivation for researchers to propose low-dimensional

factor models, assuming that option returns are sparse in only a few factors (e.g., Karakaya, 2014;

Büchner and Kelly, 2022; Horenstein et al., 2022; Bali et al., 2022); however, given the many option

sensitivities (i.e., “Greeks”) and other cross-sectional effects documented in the literature, does a

sparse representation of the SDF actually suffice to capture the entire variation in option returns?

Sparsity in the SDF implies high redundancy among the candidate factors; however, our em-

pirical findings do not support the sparsity argument. Specifically, we study delta-hedged returns

of S&P500 index options over a period of almost three decades. We replicate 54 factors studied
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in the previous literature and, using the agnostic approach of Kozak et al. (2020), we examine—in

a purely data-driven fashion—whether factors earn a premium because they proxy for a source of

systematic risk or because they are correlated with the true SDF but do not provide incremental

information. The approach proposed by Kozak et al. (2020) allows the SDF to be estimated while

regularizing the factor weights in terms of shrinkage (L2) to reduce overfitting and sparsity (L1)

to zero out factors in the SDF. Our empirical findings suggest that that many factors earn a sig-

nificant premium that is not captured by either the capital asset pricing model (CAPM) or other

models previously proposed in the literature. Figure 1 shows the alphas obtained from a time-series

regression of the 54 option factors on the ex ante mean-variance efficient portfolios (MVPs) implied

by the CAPM, Karakaya (2014) three-factor (K3), Horenstein et al. (2022) three-factor (HVX3),

Bali et al. (2022) five-factor (BCCSZ5),1 RP-PCA three-factor (RPPCA3), and IPCA three-factor

(IPCA3) models.2 The filled dots represent the alphas against the MVP implied by a non-sparse

SDF, estimated using L2 regularization. The adjacent model allows for sparsity in the SDF by

regularizing the SDF coefficients with both L1 and L2 regularization. The dashed red lines mark

the t-statistic thresholds at which the alpha is statistically significant at the 5% level, after adjust-

ing the p-values to control for the multiple hypothesis testing problem using the Benjamini and

Hochberg (1995) method. The numbers above the circles refer to the number of factors that earn a

significant alpha compared to the respective model. Considering the CAPM, sixteen option-based

factors earn a significant abnormal premium, supporting the finding of cross-sectional predictability

of index option returns documented in the literature. The results for the non-sparse SDF, which

employs L2 regularization, suggest that the index option return puzzle is highly multidimensional

so that a few characteristic-based factors cannot capture the entire return variation. Specifically,

the non-sparse SDF fails to explain the returns of two factors, while the benchmark models leave

between nine and twenty factors unexplained. This result emphasizes the need for a non-sparse

1Bali et al. (2022) propose a six-factor model for stock options; however, one factor is based on stock prices.
Because we analyze index options for which all options have the same underlying, we cannot create a stock price
factor. Thus, we analyze the cross-sectional variation explained by the five option-based factors.

2Note that we use the terms MVP and tangency portfolio interchangeably.
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model for option returns.

[Insert Figure 1 about here]

Our extensive asset pricing tests highlight the superiority of a non-sparse SDF. The MVP im-

plied by the non-sparse SDF achieves an annualized CAPM alpha of 1.40%. The alphas against

other empirical benchmark models range from 0.66% to 1.53%. Not even the statistical bench-

mark models, namely, RP-PCA and IPCA, can explain the MVP returns of the non-sparse SDF,

suggesting that it exhibits mean-variance efficiency. In contrast, we find that the other MVPs are

not mean-variance efficient. Throughout our empirical study, we further show that the extension

from a set of 54 factors that are linear in option characteristics to an extensive set of 702 factors,

including nonlinear transformations and interactions, does not further improve the span of the effi-

cient frontier. Our findings are robust across several market states, against alternative estimation

windows, and against the exclusion of illiquid options. Finally, MVP returns cannot be explained

by asset pricing factors from the stock market, supporting the view that options are not redundant

assets but have their own dynamics. Our empirical findings that the SDF in index option returns is

non-sparse is in line with the findings documented in Kozak et al. (2020) for equities. Furthermore,

the results presented in Büchner and Kelly (2022) likewise suggest that many option characteristic-

based contain incremental information about future option returns; however, our findings reveal

that IPCA is not able to capture all information with a handful of factors.

Although our empirical findings indicate that many factors contribute to the SDF, some factors

dominate. The maturity slope factor of Karakaya (2014) that captures variations in option returns

associated with shifts in the implied volatility term structure is by far the most important factor

(after controlling for the market portfolio). Next, factor momentum and a theta-based factor along

with characteristic-based factors constructed from put options, namely embedded leverage, option

vega, change in implied volatility, time-to-maturity, and option price, are of great importance.

While other factors weigh less in the SDF, they are not of negligible relevance; rather, the linear

combination of many factors contributes to the pricing performance of the SDF. In fact, sparse SDFs
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have higher pricing errors, suggesting that the option pricing puzzle is highly multidimensional.

Our findings align with the recent evidence in the literature for other asset classes that the

SDF is dense in many characteristics, hence, it cannot be spanned by simple linear models covering

only a few factors. Examples of such studies include Bryzgalova et al. (2023) for equities, Dickerson

et al. (2023) for corporate bonds, and Käfer et al. (2024) for single-name equity options. The recent

evidence that a “complex” SDF best prices assets is in line with the theoretical evidence provided

by Didisheim et al. (2024). They refer to this phenomenon as “virtue of complexity”, which is also

shown to exist in time-series analyses (Kelly et al., 2022, 2024).

This paper contributes to the existing literature in several ways. First, we extend the literature

on the cross-sectional predictability of option characteristics to index option returns. While most

cross-sectional studies relate to stock options with different underlyings (Goyal and Saretto, 2009;

Cao and Han, 2013; Ruan, 2020; Hu and Jacobs, 2020; Zhan et al., 2022; Bali et al., 2022, 2023),

studies on the cross-section of index options are limited (Cao and Huang, 2007; Hu and Liu, 2022;

Büchner and Kelly, 2022), despite their high relevance for risk management. While Zhan et al.

(2022) show that the underlying’s characteristics predict future option returns, Bali et al. (2023)

find that contract-level characteristics are the most important signals for future returns, although

they show that the underlying’s characteristics play a minor yet not unimportant role. By studying

index option returns, the underlying is the same for all contracts, thus allowing to study the risk

factors that drive option returns in isolation, i.e., without having to take differences in the respective

underlying into account. This also eliminates “idiosyncratic noise” due to stock-specific events or

incomplete information in the underlying’s characteristics.

Second, our paper is related to the strand of literature that applies machine learning techniques

to the cross-section of option returns. Cao and Huang (2007) use principal component analysis to

uncover latent risk factors in S&P500 index option returns. Horenstein et al. (2022) use RP-PCA to

identify the empirical factors that best approximate the most informative principal components in

stock option returns. Büchner and Kelly (2022) and Goyal and Saretto (2022) use IPCA to uncover
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a conditional linear latent factor structure in index and stock option returns, respectively. Closely

related to the approach used in this paper is the work of Shafaati et al. (2022) who use a penalized

linear regression to uncover which characteristics provide incremental information in stock option

returns. Within this high-dimensional setting, they show that a penalized estimator yields more

accurate predictions. Bali et al. (2023) additionally allow for nonlinearities and demonstrate that

predictability is further enhanced. Similarly, Goyenko and Zhang (2022) train machine learning

techniques using option and stock characteristics as inputs to predict option and stock returns.

The remainder of this paper is organized as follows: Section 2 briefly reviews the estimation of

the robust SDF as proposed in Kozak et al. (2020) and Section 3 describes the data used in our

empirical study. Section 4 presents the main results while Section 5 reviews the findings for a series

of robustness checks. Section 6 concludes the article.

2 Method

This section briefly reviews the estimation of the robust SDF estimation approach proposed in

Kozak et al. (2020). To introduce notation, let rt be an N × 1 vector of option excess returns,

with i = 1, . . . , N denoting the number of option contracts. Zt−1 is an N × L matrix of option

characteristics, with l = 1, . . . , L being the number of characteristics. Note that Zt−1 may include

any linear or nonlinear transformation of the characteristics (Kozak et al., 2020).

Assuming that the law of one price holds, one can find an SDF linear in excess returns

Mt = 1− b
′
t−1 (rt − Et−1 [rt]) (1)

such that all individual options are priced according to:

Et−1 [Mtrt] = 0 (2)
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with bt−1 denoting an N × 1 vector of SDF loadings. The SDF loadings can be obtained by

bt−1 = Σ−1µ (3)

with Σ−1 denoting the true N ×N variance-covariance matrix of asset returns and µ denoting an

N×1 vector of true asset risk premia Et−1 [rt]. However, the true population moments µ and Σ are

not known and must be estimated. Estimating Σ from empirical data poses a significant challenge

for two main reasons: First, individual return data is unbalanced, introducing complexities in the

estimation process. Second, as the sample size N increases, the estimation of equation (3) may

become infeasible.

To address these issues, researchers frequently try to summarize the variation in asset returns

with few characteristic-based factors (Fama and French, 1993, 2015; Horenstein et al., 2022; Bali

et al., 2022; Büchner and Kelly, 2022). That is, the characteristic-based SDF can be expressed as:

Mt = 1− (Zt−1b)
′
(rt − E [rt]) (4)

with b denoting an L × 1 vector of time-invariant coefficients (Kozak et al., 2020). Mapping the

asset excess returns into the L-dimensional factor space, i.e.,

ft = Z
′
t−1rt (5)

with ft denoting an L× 1 vector of factor returns, the SDF in equation (4) can be rewritten as

Mt = 1− b
′
(ft − E [ft]) . (6)

Likewise, equation (2) can be reformulated to

Et−1 [Mtft] = 0. (7)
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Analogous to equation (3), one can solve equation (6) and (7) by estimating

b = Σ−1
f µf (8)

with Σf denoting the true L× L variance-covariance matrix of factor returns and µf denoting an

L×1 vector of true factor premia. By first mapping individual returns into the factor space, one can

always create balanced factor return data, which makes the estimation of Σf possible. Likewise, by

reducing the dimensionality from N to L assets, the estimation of Σf becomes feasible. However, as

outlined in Kozak et al. (2020), the estimation of the population moments may become infeasible if

L is large. Similarly, estimation may become inefficient in the presence of highly correlated factors.

Instead of estimating b as in equation (8), Kozak et al. (2020) propose a penalized estimator

for b to efficiently operate in high-dimensional datasets. Specifically, their dual-penalty estimator

allows for L1 and L2 regularization. L2 regularization adds the squared magnitude b
′
b to the

loss function in order to reduce the magnitude of less important factors. While L2 regularization

shrinks the coefficients towards but not exactly to zero, the L1 regularization adds a penalty for the

absolute value of magnitude
∑L

l=1 |bl| to the loss function, and thus allows shrinking the coefficients

to exactly zero. Accordingly, L2 and L1 regularization are also referred to as shrinkage and sparsity,

respectively. While L1 regularization allows the coefficients to be shrunk to exactly zero, it performs

poorly if the factors are highly correlated (Tibshirani, 1996; Zho and Hastie, 2005); therefore, the

L1 penalty is often blended with the L2 penalty, which shrinks the coefficients of correlated factors

toward each other, thereby allowing them to borrow strength from each other (Hastie et al., 2011).

The combined L1 and L2 is often referred to as elastic net, and is frequently applied in empirical

finance (Gu et al., 2020; Dong et al., 2022).

Thus, the dual-penalty estimator in Kozak et al. (2020) minimizes the Hansen and Jagannathan
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(1991) distance subject to an L2 and L1 penalty:

b̂ = argmin
b̂

(
µ̄− Σ̄b̂

)′

Σ̄−1
(
µ̄− Σ̄b̂

)
+ γ2b̂

′
b̂+ γ1

L∑
l=1

|b̂l| (9)

with γ2 and γ1 controlling the degree of L2 and L1 regularization, respectively, and µ̄f and Σ̄

denoting the sample estimates of the true vector of factor premia and the variance-covariance

matrix of factor returns.

3 Data

This section discusses the sample data and our preprocessing approach. Specifically, Section 3.1

introduces our sample and discusses the filters used to prepare the data, Section 3.2 illustrates how

we calculate delta-hedged returns, and Section 3.3 describes the factor construction.

3.1 Data Source and Preprocessing

We obtain daily option data from OptionMetrics during the period from January 1996 to Decem-

ber 2022, including option-specific characteristics, underlying index values, and option sensitivity

measures such as the Black-Merton-Scholes (BMS) delta, gamma, vega, and theta. Data for the

VIX index are obtained through the Chicago Board Options Exchange (CBOE).

To ensure the cleanliness of our data, we apply a number of filters to the OptionMetrics data

that were previously proposed in the literature. Specifically, we exclude observations in which the

bid price is negative, the bid price is greater than the ask price, or no-arbitrage conditions are

violated (Karakaya, 2014; Lemmon and Ni, 2014; Büchner and Kelly, 2022; Frazzini and Pedersen,

2022).

In our study, we rely on daily data to increase the estimation efficiency of the SDF (see Kozak

et al., 2020, for a discussion on the relevance of a large number of time-series observations); however,
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we do not rebalance portfolios daily to reduce turnover (Kozak et al., 2020).3 Instead, on each third

Friday of a month, which is the standard expiration day for the options studied here, we assign

options to factor portfolios (see Section 3.3) and hold these factor portfolios until the third Friday

of the next month (Büchner and Kelly, 2022). To further enhance the quality of our data, we then

apply the following filters at the beginning of each holding period: First, we exclude observations for

which the implied volatility measure is not available. Second, we control for outliers by excluding

observations with embedded leverage below (above) the 1st (99th) percentile of the cross-sectional

embedded leverage distribution, with embedded leverage Ωi,t of option i at time t defined as:

Ωi,t = |∆i,t
St

Fi,t
| (10)

with ∆i,t denoting the BMS delta of option i at time t, St being the spot price at time t (the same

for all options), and Fi,t being the mid price of the option i at time t. We apply this filter to put and

call options separately (Karakaya, 2014; Büchner and Kelly, 2022). Third, we increase the liquidity

of our sample by limiting it to option contracts with an absolute forward delta between 0.01 and

0.5 and, fourth, we require a time-to-maturity of one to twelve months (Israelov and Kelly, 2017;

Büchner and Kelly, 2022). As shown in Büchner and Kelly (2022), options outside of this range

account for only a marginal fraction of the option market and are of minor economic importance;

however, they introduce noise into the return data. Finally, because we use daily data, we require

for an option to be included in the portfolio that its characteristic is available at the beginning of

the holding period and that all return observations within that holding period are non-missing.

Figure 2 shows the number of options and the total open interest over time. At the beginning of

our sample, there are only a few hundred options, but from 2008 onwards, the number of contracts

and the trading volume increases rapidly, so that the cross-section at the end of the sample consists

of approximately 4,000 unique options per holding period.

3In unreported results, we also analyze monthly data but find that the results are qualitatively unchanged. To be
consistent with the empirical analysis in Kozak et al. (2020), we therefore stick to daily data.
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[Insert Figure 2 about here]

3.2 Delta-Hedged Option Returns

We follow the common literature (e.g., Bakshi and Kapadia, 2003; Cao and Han, 2013; Büchner

and Kelly, 2022) and focus on delta-hedged option returns, so that the options are immune to linear

price changes of the underlying. That is, we delta-hedge the returns on a daily basis to isolate the

fraction of option returns that is not due to price changes in the underlying (Büchner and Kelly,

2022; Bali et al., 2023). Specifically, the discrete delta-hedged profit-and-loss (P&L) from day t to

t+ 1 with delta-hedging at the end of each trading day is given by:

Π[t,t+1] = (Ft+1 − Ft)−∆t (St+1 − St)−
at,t+1r

f
t

365
(Ft −∆tSt) (11)

with Ft denoting the option’s mid-price at time t, ∆t the option’s delta at time t, St the closing

price of the underlying at time t, rft the risk-free rate at time t, and at,t+1 the number of days

between trading days t and t + 1. The first term is thus the raw P&L of the option from day t

to t + 1, the second term adjusts the raw P&L by delta-hedging the position, and the third term

adjusts for the cost of funding the delta-hedged portfolio at the risk-free rate. Finally, as in Büchner

and Kelly (2022), the delta-hedged option return is obtained by dividing the delta-hedged option

P&L Π[t,t+1] by the closing price of the underlying:4

r∆i,t+1 =
Π[t,t+1]

St
(12)

Table 1 provides summary statistics for our sample, including the mean, median, and standard

deviation of option characteristics and returns for call (Panel A) and put (Panel B) options. The

last row in each panel reports the number of observations for the call and put options. In total,

our sample covers 106,990 unique option contracts (36,527 call and 70,463 put options) over a

4In Internet Appendix A, we show that the Euler equation shown in equation (2) also holds for funded delta-hedged
option returns as defined in equations (11) and (12), justifying the use of the method described above.

12



sample period of almost three decades, resulting in 6,722 daily observations. The mean and median

delta-hedged return is negative, which is in line with the previous literature (Cao and Han, 2013;

Büchner and Kelly, 2022). For call options, the annualized average delta-hedged return is -4.67%

while put options earn an average return of -7.05%.

[Insert Table 1 about here]

3.3 Candidate Option-Based Factors

Our set of candidate factors includes 48 characteristic-based factors and six non-characteristic-

based factors that were previously proposed in the literature. The characteristic-based factors

are zero-investment long-short portfolios with individual option weights depending on the cross-

sectional rank of the options. Specifically, we follow Kozak et al. (2020) and first transform all

characteristics into normalized cross-sectional ranks as described in equation (13):

z̃li,t−1 =
rank

(
zli,t−1

)
nt−1 + 1

(13)

with zli,t−1 denoting the l-th characteristic of the i-th option, observed at time t− 1, nt−1 denotes

the number of available options at time t− 1, and z̃li,t−1 denotes the i-th option’s normalized rank

at time t − 1. Then, we center the characteristic ranks cross-sectionally and divide them by the

sum of absolute deviations from the mean of all options to obtain the portfolio weights:

wl
i,t−1 =

z̃li,t−1 − ¯̃z
l
t−1∑nt−1

i=1 |z̃li,t−1 − ¯̃z
l
t−1|

(14)

where wl
i,t−1 represents the weight of option i at time t− 1 in the factor portfolio l. The term ¯̃z

l
t−1

denotes the cross-sectional mean of characteristic ranks, i.e., ¯̃z
l
t−1 = 1

nt−1

∑nt−1

i=1 z̃li,t−1. Finally, we

stack the option weights into a matrix Wt−1 of dimension N × L and obtain the factor portfolio
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returns ft at time t as:

ft = W
′
t−1r

∆
t (15)

with r∆t denoting the N × 1 vector of delta-hedged option returns at time t, as defined in equation

(12). As emphasized in Kozak et al. (2020), these factor portfolios are insensitive to outliers and

keep the amount of long and short positions invested in the characteristic-based factor fixed. Thus,

a change in the number of options at any time t has no effect on the strategy’s gross exposure.

The list of characteristic-based factors includes the option sensitivities delta, gamma, vega, and

theta as well as the higher-order sensitivities speed, vanna, and volga. The set is augmented by

embedded leverage (emb lev), moneyness (mness), time-to-maturity (ttm), implied volatility (im-

plvol), change in implied volatility (implvol ch), volatility of implied volatility (volvol), maximum

implied volatility over the previous holding period (maxivol), implied skewness (iskew), implied

kurtosis (ikurt), volume (volume), open interest (openint), turnover (turnover), mid price (mid-

price), market capitalization (mcap), bid-ask spread (bidask), the last holding period’s option

return (ret1 ), and the maximum option return over the previous holding period (max ). In line

with Büchner and Kelly (2022), we interact all characteristics with an indicator variable equal

to one if the option contract is a put option and zero otherwise. As a result, we have a set of

characteristic-based factors that invests in both put and call contracts and a set investing in put

options only. Thus, the final set of option characteristics includes 48 characteristics. A detailed

description of all option characteristics is provided in Internet Appendix B.

Beyond the characteristic-based factors defined above, we include six option-based factors that

were previously proposed in explaining option returns. These include a level (level), moneyness

skewness (skewness), and maturity slope (maturity slope) factor (Karakaya, 2014; Büchner and

Kelly, 2022), the betting-against-beta (bab) factor (Frazzini and Pedersen, 2022), and two factor

momentum factors (Käfer et al., 2023). Specifically, the level factor is an equally weighted portfolio

that shorts ATM options with an absolute delta between 0.4 and 0.5. The moneyness skewness

factor goes long in call options with a delta between 0.1 and 0.2 and short in put options with deltas
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between -0.2 and -0.1, and the maturity slope factor buys options with maturities between six and

twelve months and sells options with one month to maturity. The betting-against-beta (BAB)

factor is constructed following Frazzini and Pedersen (2022) and Büchner and Kelly (2022), that

is, options are sorted into high and low embedded leverage portfolios based on the cross-sectional

median. Options are weighted by their market capitalization (open interest times price), and the

portfolios are rescaled by the value-weighted embedded leverage of the resulting long and short

portfolios, respectively. Lastly, the bab factor is the equally weighted average of the bab factors

constructed for call and put options separately (Frazzini and Pedersen, 2022; Büchner and Kelly,

2022). Finally, we include two factor momentum factors. Recently, Heston et al. (2022) document

a momentum effect in option returns, however, Käfer et al. (2023) find that option momentum is

not driven by momentum in individual options but by momentum in option factors, i.e., factor

momentum (Ehsani and Linnainmaa, 2022). Thus, to account for momentum in option returns,

we augment our factor set by two time-series factor momentum strategies that buy (sell) all factors

described above with a positive (negative) return over the previous one (fmom1 ) and six (fmom6 )

months, respectively. We choose these formation periods because they were found in Käfer et al.

(2023) to be the most important frequencies.5

In sum, we study a comprehensive set of 54 option-based factors and their contribution to the

SDF. Figure 3 plots the annualized average CAPM-adjusted returns against the average raw factor

returns. The market portfolio is proxied by the equally weighted average delta-hedged return of

all available options (Horenstein et al., 2022). Table 1 in Internet Appendix C shows the average

raw returns and alphas corresponding to each factor. Factors that have a significant premium

after controlling for the CAPM at the 5% level are marked with filled circles. The p-values are

corrected to account for the multiple testing problem (Harvey et al., 2016; Chordia et al., 2020)

by controlling for the false discovery rate using the Benjamini and Hochberg (1995) method. The

circles are aligned around the 45-degree line, suggesting that the alphas increase linearly with the

5In unreported results we find that the actual choice of the formation period or whether to use time-series or
cross-sectional factor momentum does not qualitatively affect the results.
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respective average returns. Thus, the CAPM fails to capture the variation associated with many

factors. In fact, out of twenty-four factors that earn a significant premium, the CAPM can only

explain two, thus leaving twenty-two factors unexplained. As such, the single-factor CAPM is not

sufficient for pricing index options. In the following analyses, we examine how many factors are

necessary and which factors capture most of the variation.

[Insert Figure 3 about here]

4 Empirical Results

4.1 A Stochastic Discount Factor for Index Option Returns

We begin our empirical analysis by studying the structure of the optimal SDF by comparing the

pricing ability of SDFs with varying levels of L1 and L2 regularization. Because we aim to identify

the drivers of cross-sectional return variation, we first orthogonalize all factors with respect to the

equally weighted market portfolio (Kozak et al., 2020; Avramov et al., 2023). We then perform

a 5-fold cross-validation to determine the optimal level of sparsity (L1) and shrinkage (L2). Note

that we employ a time-series cross-validation; that is, we preserve the temporal order of the data

by estimating the SDF coefficients using only information available at time t. This approach, also

known as “walk-forward cross-validation” (Kaastra and Boyd, 1996; Kohzadi et al., 1996), ensures

that the performance of time-series models is effectively tested without suffering from a forward

looking bias. Specifically, we divide the sample into (K+1) chunks of equal size. Then, we estimate

the SDF coefficients using the first chunk k1 and apply the weights to the next sample k2. Next,

we roll forward the estimation window and estimate the parameters using the data of chunk k2 and

evaluate the model on the test sample k3. We continue this procedure until the sample ends. For

each test sample, we calculate the following objective:

R2
cv = 1−

(
µ̄cv − Σ̄cv b̂

)′ (
µ̄cv − Σ̄cv b̂

)
µ̄′
cvµ̄cv

(16)
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with µ̄cv and Σ̄cv denoting the mean and variance-covariance matrix of the withheld sample data.

The estimated vector of SDF loadings is represented by b̂. Because the first chunk was never used

for validation, we average over K = 5 R2
cvs and choose the regularization strengths that maximize

the average R2
cv (Kozak et al., 2020).

Figure 4 shows the average R2
cvs for different levels of sparsity and shrinkage. Larger values

on the y-axis indicate low sparsity (i.e., low L1 regularization), while larger values on the x-axis

represent a higher degree of L2 shrinkage. As pointed out in Kozak et al. (2020), the L2 penalty

term in equation (9), γ2, can be expressed as the root expected squared Sharpe ratio κ. Therefore,

the degree of shrinkage is labeled κ. Warmer colors indicate higher R2
cvs. Our results resemble those

reported in Kozak et al. (2020) for stocks; that is, models without shrinkage (bottom left corner)

have poor out-of-sample performance. Penalizing the estimator remarkably improves the R2
cvs. We

also find that the vector of SDF coefficients b is far from being sparse. Non-sparse representations

having between thirty and fifty nonzero weights in the SDF produce the highest R2
cvs. This finding

indicates that there is no redundancy in option factor returns, rather many factors matter, thus

rejecting the idea of a characteristic-sparse SDF. In our subsequent analyses, we therefore analyze

the properties and pricing performance of the SDF estimator employing only L2 regularization and

consider the dual-penalty estimator as a benchmark.

[Insert Figure 4 about here]

Figure 5 shows the estimated SDF coefficients using the optimal L2-only estimator. By far

the most important factor is the maturity slope factor of Karakaya (2014), capturing the cross-

sectional variation in option prices associated with changes in the implied volatility term structure

(Büchner and Kelly, 2022). The other factors proposed in Karakaya (2014)—level and moneyness

skewness—do not have large coefficients, indicating that they capture a smaller fraction of cross-

sectional variation in option returns. As discussed in Karakaya (2014), the level factor represents

a compensation for market-wide volatility and jump shock; therefore, it is closely related to the

market factor (the Pearson correlation coefficient is -0.90). Because our analyses focus on the cross-
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sectional predictability of option returns and we consider factors that are orthogonal to the market,

the level factor captures only a smaller fraction of information about cross-sectional differences in

option returns. Likewise, the moneyness skewness factor of Karakaya (2014) also has a small weight

in the SDF, suggesting that it also captures only limited incremental information.

The next most important factor is the one-month factor momentum factor, which achieves—

according to Table 1 in Internet Appendix C—an annualized CAPM-adjusted return of 0.27% (t-stat

= 4.30). Its large coefficient in the SDF indicates that factor momentum represents an incremental

phenomenon that cannot be explained by other factors in the data set. The observation that buying

past winner and selling past loser factors yields significant abnormal returns was first documented

by Ehsani and Linnainmaa (2022). Numerous subsequent studies confirm that factor momentum

is a pervasive effect, existing in industry-adjusted portfolios (Arnott et al., 2023), cryptocurrencies

(Fieberg et al., 2023), and more related to this study, in stock options (Käfer et al., 2023). Thus,

our finding that factor momentum exists in index options aligns with this recent strand of literature.

Next, the theta-based factor, which earns a large and statistically significant CAPM-adjusted

premium of 0.34% (t-stat = 2.89), has a large coefficient in the SDF, supporting the findings in

Bali et al. (2023) that theta plays a major role in the prediction of option returns. The next

most important factors are characteristic-based factors formed only from put options, beginning

with embedded leverage. Frazzini and Pedersen (2022) argue that investors demand lower returns

for high embedded leverage options because buying options that embed leverage allows them to

increase their market exposure without violating leverage constraints. The negative SDF coefficient

and the negative CAPM-adjusted return of -0.54% (t-stat = -5.20) as reported in Table 1 in Internet

Appendix C support this hypothesis. In line with the findings in Shafaati et al. (2022) and Büchner

and Kelly (2022) that vega is a relevant driver of option returns, its large nonzero coefficient

indicates that its CAPM-adjusted premium of 0.52% (t-stat = 4.65) cannot be captured by other

factors. Furthermore, other factors, including the change in implied volatility factor, the put-based

time-to-maturity factor, and the put-based midprice factor have large nonzero coefficients—all

18



earning significant premia (see Table 1 in Internet Appendix C).

Interestingly, factors constructed solely from put options tend to contribute the most to the

SDF, while factors constructed from both call and put options are of lower importance. Because

put options act as insurance products for the underlying, they are, on the one hand, more liquid

and over a wider range of strikes. Therefore, they tend to have more interpretable information

priced in, whereas call options tend to have more noise. On the other hand, as insurance products,

they earn returns in left-tail events with respect to the general market—especially given that the

underlying is a market index. Thus, they will tend to contain a premium that is associated with

jump/tail risks (and even volatility risks via the leverage effect) in the distribution of the underlying

perceived by the market. Information regarding tail and jump risks is relevant to expectations of

the volatility of the underlying—which is the key driver of all options—as well as shorter maturity

options, for which jumps cause a significant reaction in prices and also risk sensitivities that drive

subsequent returns after a jump.

In summary, our findings suggest that the option pricing puzzle is multidimensional and that

many factors capture unique information about future option returns. The observation that they

have nonzero coefficients in the SDF does reject the idea of a sparse SDF, whose covariances with

option factors cause them to earn significant premia. The subsequent sections focus on analyzing

the pricing ability of this non-sparse SDF compared to sparse models.

[Insert Figure 5 about here]

4.2 Asset Pricing Tests

Having determined that a non-sparse SDF achieves the best pricing performance in terms of statis-

tical measures, we inquire about the economic asset pricing performance of the SDF-implied MVP.

Because the SDF coefficients are equivalent to the weights in the MVP (Back, 2010), our asset

pricing tests focus on the efficient frontier spanned by the SDF. Comparing asset pricing models in

terms of MVP performance instead of focusing on alphas of some test assets is also favored in, for
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example, Barillas and Shanken (2018), Soebhag et al. (2022), and Kozak et al. (2020). However, in

Section 4.3, we also test the pricing ability of the candidate SDFs for the set of factors studied in

this paper.

We compare the performance of the MVP implied by the non-sparse SDF employing L2 regu-

larization with various benchmark MVPs, beginning with an MVP obtained from the dual-penalty

estimator. The other benchmark models include characteristic-sparse representations implied by

empirical factor models, including the Karakaya (2014) three-factor (K3), Horenstein et al. (2022)

three-factor (HVX3), and Bali et al. (2022) five-factor (BCCSZ5) models, as well as statistical asset

pricing models, namely, RP-PCA (RPPCA3), and IPCA (IPCA3), both including three factors.6

For these benchmark models, the SDF-implied portfolio is obtained by first orthogonalizing the fac-

tors (or their projections) with respect to the market. Then, MVP weights are estimated according

to equation (8), i.e., b̂ = Σ̄−1
f µ̄f (Kozak et al., 2020).

To avoid the potential of overfitting, we compare out-of-sample performance metrics of the

candidate MVPs. Specifically, our analysis focuses on recursive model estimation using only data

known at time t (Lewellen, 2015; Kelly et al., 2019; Büchner and Kelly, 2022). That is, we estimate

the SDF coefficients using in-sample data and apply these to out-of-sample observations. Our out-

of-sample period begins ten years after our sample period starts, i.e., in January 2006, and ends in

December 2022. Instead of re-estimating the MVP weights daily, we rebalance the portfolios each

third Friday of a month to reduce turnover and computational costs.7 That is, we use all data

available from January 1996 to the 20th of January 2006 (the beginning of our first out-of-sample

holding period) to estimate the MVP weights. The optimal level of regularization is selected using

a 5-fold time-series cross-validation as described above. We obtain the out-of-sample MVP returns

by multiplying the weights with the factor returns over the holding period. Then, we re-estimate

6Note that we estimate RP-PCA and IPCA with three factors because Büchner and Kelly (2022) find that a
three-factor IPCA best prices S&P500 index options and Horenstein et al. (2022) identify a three-factor RP-PCA
model for stock options. In unreported results, we also estimate models with K = 1, . . . 6 factors, however, we can
confirm their results that the three-factor models perform best. Both RPPCA3 and IPCA3 are estimated based on
the same set of CMPs used for estimating the penalized SDF.

7This rebalancing period aligns with our factor construction described in Section 3.3.
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all parameters, including the most recent observations used for estimation.8 Note that, as in our

previous analyses, we first orthogonalize the factors with respect to the market return using only

in-sample information. Furthermore, we follow Kozak et al. (2020) and Avramov et al. (2023) and

re-scale the MVP weights to target the in-sample volatility of the market portfolio.9

Table 2 shows the annualized alphas of the non-sparse MVP against the benchmark models.

Note that because the factors are orthogonal to the market portfolio, the average return of the MVP

equals the CAPM alpha, which amounts to 1.40% p.a. and is statistically significant at the 1% level

(t-stat = 4.80). The alphas against the empirical benchmark models are also large and statistically

significant: The abnormal return compared to the HVX3 and BCCSZ5 models is 1.53% (t-stat

= 6.65) and 1.40% (t-stat = 4.81), respectively, whereas the alpha against the K3 model is only

about half as large, i.e., 0.66%. However, the alpha against the K3 model is statistically significant

at the 1% level (t-stat = 4.07). The next two columns show the abnormal returns compared to

the two statistical asset pricing models that first rotate the factors into a low-dimensional latent

factor space to achieve a dimensionality reduction from 54 to three factors, namely, RPPCA3 and

IPCA3. The alpha against the IPCA-based MVP is 1.15% (t-stat = 4.77), while the alpha against

the RPPCA3 is only 0.30% but statistically significant (t-stat = 2.35). The results indicate that

RPPCA3 is a strong competitor, however, it fails to explain the returns of the MVP implied by

the non-sparse SDF.

The last column shows the performance compared to an MVP implied by an SDF allowing for

both sparsity and shrinkage. The non-sparse MVP employing only L2 regularization outperforms

the dual-penalty estimator with an alpha of 0.34%, which is significant at the 1% level (t-stat =

2.68). The finding that the MVP obtained from the L2 estimator outperforms the MVP estimated

using the dual-penalty thus supports the findings from Figure 4; rejecting the idea of a sparse SDF

that prices option returns.

8In Table 2 in Internet Appendix C, we show results using a rolling fixed-length estimation window.
9Because the loadings in the SDF are proportional to the inverse of Σ̂f times µ̂f , the coefficients can become

extremely large, producing an MVP with unrealistic mean and volatility.
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[Insert Table 2 about here]

Figure 6 visualizes the abnormal performance of the non-sparse SDF-implied MVP over time.

The outperformance against the CAPM, HVX3, BCCSZ5, and IPCA3 models is clearly visible.

Likewise, although weaker, the non-sparse SDF consistently generates abnormal returns against

the dual-penalty estimator and the K3 and RPPCA3 models. Interestingly, the abnormal returns

relative to alternative MVPs do not move in the same way. Taking into account the drop in

abnormal returns at the beginning of 2020, the abnormal returns compared to all models, except

the dual-penalty and K3 model, decrease, while the abnormal returns against the MVP implied by

the dual-penalty estimator and K3 model do not decline. This indicates that these MVPs perform

poorly in times of crises. We further address the time-series variation in MVP profitability in

Section 5.3.

[Insert Figure 6 about here]

The statistically significant alphas against benchmark models indicate that the non-sparse SDF-

implied MVP cannot be spanned by other models; however, is it really mean-variance efficient? To

address this question, we perform a test of mean-variance efficient frontier expansion in the spirit of

Novy-Marx and Velikov (2016) and Soebhag et al. (2022), based on the out-of-sample performance

improvement obtained by combining two MVPs.

Consider two MVPs, labeled as MV PA and MV PB, respectively. If MV PA exhibits mean-

variance efficiency, it should achieve a higher Sharpe ratio compared to all other available investment

opportunities (Barillas and Shanken, 2018). In other words, a portfolio that combines investments

from both MV PA and MV PB (referred to as MV PA,B) should not surpass the performance of

MV PA. To assess the mean-variance efficiency of an MVP, we obtain the generalized alpha from

the following time-series regression (Novy-Marx and Velikov, 2016; Soebhag et al., 2022):

MV PA,B
t = α+ βMV PA

t + ϵt (17)
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with α and β denoting the regression coefficients and ϵ the residuals at time t. The generalized alpha

(α) can be interpreted as the abnormal return due to the addition of MV PB to the investment

opportunity set. Therefore, a positive and statistically significant α indicates that the performance

of MV PA can be improved by augmenting the investment opportunity set with MV PB, i.e.,

MV PA is not mean-variance efficient (Novy-Marx and Velikov, 2016; Barillas and Shanken, 2018;

Soebhag et al., 2022). Denote ΣA,B as the covariance matrix and µA,B as the vector of the average

returns of the portfolios MV PA and MV PB. The optimal weights of both assets in MV PA,B
t are

obtained according to equation (3), i.e., b̂A,B =
(
ΣA,B

)−1
µA,B. Again, the weights are rescaled to

target the in-sample volatility of the market portfolio.

Table 3 reports the results. The first row shows the non-sparse SDF employing L2 shrinkage.

When adding other MVPs to the non-sparse MVP, the alphas are small and insignificant, ranging

between -0.17% and 0.25% p.a., indicating that no other MVP improves the span of the efficient

frontier. Hence, the non-sparse SDF-implied MVP is mean-variance efficient. In contrast, when

added to any benchmark model—except to the MVP obtained from the dual-penalty estimator—

the non-sparse SDF improves the span of the efficient frontier, suggesting that benchmark models

are not mean-variance efficient. However, the MVP obtained from the dual-penalty estimator has

a statistically significant generalized alpha of 0.48% (t-stat = 2.60) against the RPPCA3 model,

rejecting the mean-variance efficiency of this portfolio.

[Insert Table 3 about here]

4.3 Pricing Performance for Anomalies

The previous analyses show that the MVP implied by the non-sparse SDF exhibits mean-variance

efficiency, while benchmark models fail to span the same or an even higher efficient frontier. Ac-

cording to Barillas and Shanken (2018), this should imply that a non-sparse SDF best prices assets.

To test this, we estimate the abnormal returns of the option factors against the MVPs for the non-

sparse SDF, dual-penalty SDF, K3, BCCSZ5, RPPCA3, and IPCA3 models, i.e., we regress each
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of the option factors—which are orthogonal to the equally weighted market portfolio—on the time

series of ex ante MVP returns and obtain the alpha.

Figure 7 plots the factor alphas (y-axis) against the CAPM alphas (x-axis) over the out-of-

sample period. The alphas of the empirical benchmark models—K3 and BCCSZ5—are large and

aligned around the 45-degree line, indicating that the alphas increase linearly with the CAPM

alphas. The average absolute alphas are 0.18% and 0.21%, respectively, and, assuming a 5%

significance level, the models leave fourteen and seventeen factors unexplained. Similarly, the

RPPCA3 (IPCA3) model fails to explain eighteen (sixteen) factors and produces average absolute

alphas of 0.19% (0.20%). Thus, the rejection rates are far above the 5% false discovery rate.

The non-sparse model in Panel A does a much better job. It has an average absolute alpha

of 0.13% and leaves only two factors unexplained, namely, the implied kurtosis (p-value = 0.48%)

and the one-month factor momentum (p-value = 1.17%). The relatively week performance of the

SDF obtained from the dual-penalty estimator is also reflected in its explanation for option factors:

The SDF employing both L1 and L2 regularization has an average absolute alpha of 0.16%, while

leaving nine factors unexplained. Thus, the results confirm our earlier finding that a non-sparse

SDF is best suited to price delta-hedged index option returns.

[Insert Figure 7 about here]

4.4 Out-of-Sample Importance

In Section 4.1, we studied the structure of the optimal SDF based on parameter estimation using the

entire sample period from 1996 to 2022. We identified that several factors have nonzero coefficients

in the SDF, including the maturity slope, embedlev:put, vega:put, theta, ttm:put, midprice:put, and

fmom1 factors. To analyze whether these factors explain the superior performance of the SDF-

implied MVP found in the previous analyses, we perform an out-of-sample importance analysis as

a robustness check. Specifically, for each out-of-sample holding period, we obtain the MVP weights

following the same recursive model estimation scheme described above and set the weight of one
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factor to zero, while fixing the weight of the other factors (Kelly et al., 2019; Gu et al., 2020,

2021; Büchner and Kelly, 2022). We then obtain the SDF-implied MVP returns and measure the

contribution of a factor to the SDF-implied MVP by the reduction of the annualized Sharpe ratio

as a result of setting the weight to zero.

Figure 8 reports the results, which confirm our overall results. The factors that mostly con-

tribute to the performance of the MVP are the maturity slope factor of Karakaya (2014), the

put-based embedded leverage, vega, and midprice factors, the change in the implied volatility

factor, and the one-month factor momentum factor.

[Insert Figure 8 about here]

5 Robustness Checks

This section tests the robustness of our findings and provides further insights on the pricing per-

formance of the identified SDF. Specifically, in Section 5.1, we expand the set of candidate factors

to include interactions and nonlinear transformations of the option characteristics. Section 5.2

analyzes the pricing ability of the SDF for a subset of liquid options. The performance of the MVP

over time is analyzed in more detail in Section 5.3 and in Section 5.4, we compare the performance

of the MVP against stock market factors.

5.1 Large Set of Nonlinear Characteristics

Estimating the SDF as described in Section 2 allows it SDF to depend on a large set of candidate

factors, including hundreds or even thousands of factors. In the previous analyses, we tested a

moderate set of 54 factors and found that many of them contribute to the SDF, thus spanning the

highest mean-variance efficient frontier among all benchmark factor pricing models. In constructing

the characteristic-based factors, we relied on the linear relationship of future delta-hedged option

returns and the options’ characteristics; however, Bali et al. (2023) show that nonlinearities matter
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when modeling option returns. As such, the SDF-implied MVP may not span the highest achiev-

able efficient frontier if we neglect nonlinear information. Therefore, we next test whether adding

nonlinearities and interactions of characteristics to the factor set enhances the performance of the

tangency portfolio.

Our construction of nonlinear characteristics and interactions follows Kozak et al. (2020), that is,

we include the second and third power of all characteristics, as well as their first-order interactions.

Note that our initial factor set is based on 24 option characteristics, doubled by creating interactions

with a put indicator variable. For all L = 24 characteristics and for the 24 characteristics interacted

with the put indicator variable, we include the first-order interactions, resulting in L (L− 1) = 552

additional factors.

Denote zki,t−1 and zmi,t−1 as two rank-transformed characteristics k and m of contract i at time

t − 1. The first-order interaction characteristic zk,mi,t−1 is the product of these characteristics. We

additionally include nonlinear transformations of the characteristics by taking the second and third

powers of them, thus leading to additional 4L = 96 factors. The interactions and nonlinear trans-

formations are normalized according to equation (14); however, we do not re-rank the options.

As Kozak et al. (2020) point out, this approach is closely related to bivariate portfolio sorts and

further not re-ranking the transformed characteristics allows, for example, the cubic transformation

to have larger exposure to options with extreme realizations of the base characteristic but with the

same leverage. In summary, our extended factor set consists of 48 characteristic-based factors used

in the previous analyses, 552 interaction-based factors, 96 nonlinear characteristic-based factors,

and six non-characteristic-based factors, amounting to 702 factors.

Figure 1 in Internet Appendix C shows the OOS R2s of the dual-penalty estimator depending on

the degree of L1 and L2 regularization, when applied to the extended set of 702 factors, and Figure 2

shows the fifteen largest coefficients in the dual-penalty estimator. Qualitatively, the results support

the findings from Section 4.1: A sparse SDF is not sufficient for pricing index option returns. We

find that the same factors as identified before as well as their nonlinear transformations contribute
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the most to the SDF. Specifically, the maturity slope factor weighs the most, followed by the third

power of the embedlev:put and vega:put factors. However, their linear counterparts also have a

large coefficient in the SDF. Likewise, the linear midprice:put, ttm:put, and implvol ch factors and

their cubic transformations also appear in the SDF. However, does the nonlinear extension of the

factor set improve the span of the efficient frontier? To answer this question, we perform several

mean-variance efficient frontier expansion tests as described in equation (17). Specifically, we test

whether the span of the efficient frontier can be improved by extending the linear factor set (zi) by

a) quadratic (z2i ), b) cubic (z
3
i ), or c) quadratic and cubic (z2i , z

3
i ) characteristic transformations as

well as by d) first-order interactions (zizj), and e) quadratic and cubic extensions and interactions

(z2i , z
3
i , zizj). Thus, we successively analyze whether nonlinear effects in characteristics or their

interactions improve the performance of the MVP, instead of testing all 702 factors at once, which

could lead to an inefficient estimation of the covariance matrix or its inverse, respectively.

Table 4 reports the generalized alphas as defined in equation (17). When extending the linear

factor set to include nonlinear characteristic-based factors, the absolute alphas are small, ranging

between 0.04% and 0.44% p.a. These alphas are not significant at any conventional significance

level, suggesting that considering nonlinear factors in addition to linear ones does not improve the

span of the efficient frontier.

[Insert Table 4 about here]

Having shown that nonlinear factor extensions do not improve the span of the efficient frontier

compared to the linear factor set, we also ask how this translates into pricing errors for the set of

702 factors. Figure 9 shows the factor alphas against the SDF-implied MVP including 54 linear

factors (Panel A) and the MVP including all 702 factors (Panel B). The results support the findings

from Table 4 that the nonlinear extension does not improve the pricing performance of the SDF.

The SDF having nonzero coefficients for only linear factors fails to capture the alphas of ten factors,

leaving an average absolute alpha of 0.20%. In contrast, the SDF including all 702 factors fails to

explain 63 factors with an average absolute alpha of 0.24%.
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[Insert Figure 9 about here]

To conclude, this robustness check shows that nonlinear extensions of the initial factor set do

not improve the span of the efficient frontier and that the SDF estimated from only 54 factors

proves to have low pricing errors for an extremely large set of test factors, thereby corroborating

our main results.

5.2 Excluding Illiquid Options

Avramov et al. (2023) show for stock market data that the SDF takes extreme weights in stocks

that are difficult to arbitrage, i.e., small and distressed stocks that are less likely to be of interest

to investors and are difficult to trade. This robustness analysis examines the extent to which our

results are driven by difficult-to-arbitrage options. Note that our filters described in Section 3.1

already ensure that we consider relatively liquid options; however, we now tighten our filter and

only include those 50% of option contracts each holding period that have the lowest bid-ask spreads,

as these options face lower trading costs and are more liquid.

Figure 10 plots the factor alphas of the 54 factors constructed from a subset of liquid options

against the SDF-implied MVP from our main analyses. We find that the SDF fails to explain

only one factor, i.e., the one-month factor momentum (p-value = 2.94%), which is in line with the

false discovery rate of 5%. The average absolute alpha is only 0.09%, suggesting that the pricing

performance of the SDF does not stem from a small subset of illiquid options, but that the SDF

generalizes well to a set of liquid contracts.

[Insert Figure 10 about here]

5.3 Dependence on Market States

In Figure 6, we show that the non-sparse MVP consistently outperforms the benchmark MVPs over

time. However, noting some declines in abnormal profitability in specific phases, we take a more
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formal look at the alphas by dividing the out-of-sample period into subperiods. Studies on stock

return predictability find that the performance of factors depends on certain market states captured

by investor sentiment (Stambaugh et al., 2012; Avramov et al., 2019), volatility (Nagel, 2012), and

illiquidity (Chordia et al., 2014). In addition, Avramov et al. (2023) show that sophisticated

machine learning methods derive profitability during periods when limits to arbitrage are high. To

disentangle whether the performance of the SDF-implied MVP also depends on different market

phases, we use a battery of proxies to split the time series into subsamples. First, we divide the

sample into price (volatility) jump and non-jump periods, which are defined as holding periods in

which the return of the S&P500 is smaller than -4% (the change in the VIX is larger than 4%)

(Karakaya, 2014). Second, Kirchler (2009) and Asem and Tian (2010) link past market returns with

investors’ confidence. Therefore, we proxy for investor sentiment by defining bear and bull markets

as periods in which the 12-month trailing market return is below (above) the sample median. Third,

we define the low, medium, and high VIX regimes based on the tercile distribution of the historical

VIX over the sample period. Fourth, we analyze the performance of the MVP in “recession” and

“non-recession” periods defined according to the NBER recession dates.10 Finally, we proxy for

uncertainty in economic conditions by dividing the sample into low and high uncertainty periods

based on the median of the Bekaert et al. (2022) uncertainty index.

Table 5 reports the annualized alphas of the MVP implied by the non-sparse SDF against the

benchmark models. The non-sparse MVP achieves a significant market-adjusted abnormal return

in all subperiods, except during recession periods. In market states that are characterized by price

jumps, the alpha is significant at least at the 10% level (t-stat = 1.90), which may be due to

the reduced number of time-series observations. The average returns are particularly high in bull

markets (1.82%) and non-recession periods (1.67%); however, also in periods with bad economic

conditions, including a high VIX (1.86%) and high uncertainty (1.99%). These findings are in

line with Bali et al. (2023) who show that machine learning methods are more profitable in high

10https://www.nber.org/research/data/us-business-cycle-expansions-and-contractions
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volatility regimes.

The results in Table 5 highlight the superiority of the MVP against the benchmark portfolios

even during these subperiods. Again, the MVP achieves remarkable alphas against benchmark

models in any subperiod except in the price jump and recession periods. The K3 model has

significantly lower alphas compared to the CAPM, resulting in alphas that are only half as large

or even smaller; however, the non-sparse MVP attains significant alphas in eight out of thirteen

market states. The RPPCA3 leads to even smaller alphas. Only in the price jump, non-volatility

jump, and non-recession periods, the MVP is unexplained by RPPCA3. In summary, the non-

sparse SDF-implied MVP attains remarkable alphas in many subperiods but fails to outperform

the K3 and RPPCA3 in many market states. However, it is never outperformed by any competing

MVP.

[Insert Table 5 about here]

5.4 Other Factor Sets

Due to the link of options to their underlying, studies on option return predictability often use stock

market factors or asset pricing factors from other asset classes to capture the variation in option

returns. Table 6 reports the annualized alphas of the SDF-implied MVP against the stock market

CAPM, the Fama and French (1993) three-factor (FF3), Fama and French (2015) five-factor (FF5),

and Fama and French (2018) six-factor (FF6) model,11 as well as the factors of the augmented q-

factor model of Hou et al. (2015, 2021) (HVX),12 the mispricing factor model of Stambaugh and

Yuan (2017) (SY),13 the three factors of Daniel et al. (2020a) (DHS),14 and, lastly, the five factors

of Daniel et al. (2020b) (DMRS).15 The results show that none of the stock market asset pricing

models capture the returns of the MVP, suggesting that the option-based factors capture unique

11https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
12https://global-q.org/factors.html
13The Stambaugh and Yuan (2017) factor data is only available up to 2016, therefore, we obtain MGMT and PERF

factors from Jensen et al. (2023) via https://jkpfactors.com/
14https://sites.google.com/view/linsunhome
15http://www.kentdaniel.net/data.php
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information. The results are in line with the previous literature showing that stock factors perform

poorly in explaining option returns (Büchner and Kelly, 2022; Bali et al., 2023).

[Insert Table 6 about here]

6 Conclusion

In contrast to prior attempts in the literature to capture the cross-sectional variation in delta-hedged

option returns using low-dimensional models that include only a handful of factors, our empirical

findings suggest that dozens of factors contribute to the SDF and, in turn, span the mean-variance

efficient frontier. Using the dual-penalty estimator proposed in Kozak et al. (2020), our findings

highlight that shrinking MVP weights helps to improve mean-variance efficiency of the implied

tangency portfolio; however, the idea of a sparse SDF is rejected. A non-sparse SDF-implied MVP

outperforms sparse representations and exhibits lower pricing errors, even in subperiods or after

excluding illiquid options.

Of the extensive factor set studied, some factors dominate, including a maturity slope and factor

momentum factor, along with put-based factors that exploit the characteristic spreads in embedded

leverage, vega, time-to-maturity, and option price; however, theta- and implied volatility change-

based factors constructed from both call and put options also contribute largely to the SDF. While

the empirical findings reveal that many factors that are linear in option characteristics appear in the

SDF, nonlinear transformations or interactions of characteristics do not add further information.

By studying S&P500 index options, we observe that the option pricing puzzle is highly mul-

tidimensional. Moreover, by studying options that have the same underlying, we minimized any

effect related to the microstructure of different underlyings. The recent literature on, for exam-

ple, stock options shows that stock characteristics also drive the variation in delta-hedged option

returns (Zhan et al., 2022), although option-based characteristics appear to be the most impor-

tant drivers (Bali et al., 2023). While our study identifies several relevant option-based factors as
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drivers of cross-sectional variation in index option returns, some questions remain unanswered. Do

the results obtained from this study also hold for stock options? And, more interestingly, do op-

tion factors based on stock characteristics matter after accounting for option-based characteristics?

These questions will be interesting to address in future studies.
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Figure 1: t-Statistics of Out-of-Sample Factor Alphas

The figure shows the t-statistics for alphas derived from a time-series regression of option factors on
ex ante MVPs implied by various SDFs. These include the SDF proposed in this paper (highlighted
by filled circles) that uses L2 regularization, as well as an SDF estimated with both L1 and L2 regu-
larization, and the SDF representations of the CAPM, K3, HVX3, BCCSZ5, RPPCA3, and IPCA3
models. The t-statistics are adjusted using the Newey and West (1987) method. Additionally, the
multiple hypotheses testing problem is addressed by adjusting the p-values through the Benjamini
and Hochberg (1995) method. The number above the circles denote the number of alphas that are
significant at the 5% level. All results are based on out-of-sample estimates spanning from January
2006 to December 2022.
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Figure 2: Sample Properties Over Time

The figure shows (a) the daily number and (b) the aggregate open interest of the options covered
in this study. The study period runs from January 1996 to December 2022.
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Figure 3: CAPM Alphas of Option-based Factors

The figure shows the annualized average factor returns (x-axis) and the annualized average CAPM-
adjusted returns (y-axis) for all 54 option-based factors considered. Factors that have a significant
CAPM alpha at the 5% level are marked by filled circles. The t-statistics are adjusted using
the Newey and West (1987) method. To control for multiple hypothesis testing, the p-values are
adjusted using the Benjamini and Hochberg (1995) method. All returns are expressed in percentage
terms. The analysis covers the period from January 1996 to December 2022.
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Figure 4: R2
cvs from Dual-Penalty Specification

The figure presents cross-validation R2
cv values for models employing varying degrees of L1 and

L2 regularization, applied to 54 option-based factors. The x-axis represents the degree of L2

regularization, while the y-axis portrays the degree of L1 regularization. The level of shrinkage
(L2) is expressed as the root expected squared Sharpe ratio κ and the degree of sparsity (L1) is
represented by the number of factors that have a nonzero coefficient in the SDF. Elevated R2

cv

values are denoted by warmer colors. The analysis covers the study period from January 1996 to
December 2022.
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Figure 5: SDF Coefficients

The figure shows the contribution of all factors in the SDF estimated using L2 regularization.
Coefficients are sorted descending on their absolute SDF coefficient. The optimal level of L2

regularization is selected using a 5-fold time-series cross-validation. The sample period is from
January 1996 to December 2022.

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

ret1
bab

ret1:put
implskew:put

delta
volvol:put

max:put
mcap

vanna:put
impvol:put

max
skewness
volga:put

implkurt:put
implskew
theta:put

gamma:put
openint

maxivol:put
implvol

volume:put
speed

openint:put
level

maxivol
turnover

speed:put
vega
volga

vanna
volume

ttm
midprice

volvol
implvol_ch:put

bidask
mness:put

turnover:put
delta:put

bidask:put
gamma
fmom6

embedlev
mcap:put

mness
implkurt

midprice:put
ttm:put

implvol_ch
vega:put

embedlev:put
theta

fmom1
maturity slope

43



Figure 6: Cumulative Abnormal Return

The figure shows cumulative abnormal returns of the non-sparse SDF-MVP over the out-of-sample
period from January 2006 to December 2022. The benchmark models are the CAPM, K3, HVX3,
BCCSZ5, RPPCA3, and IPCA3 model, as well as the SDF-implied MVP obtained from the dual-
penalty estimator (L1 − L2).
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Figure 7: Out-of-Sample Factor Alphas

The figure shows the out-of-sample alphas (in %) of the 54 factors against a) the non-sparse b) the
dual-penalty, c) K3, d) BCCSZ5, e) RPPCA3, and f) IPCA3 SDF-implied MVP. The MVP weights
are estimated using only information available at time t, thus, the alphas are out-of-sample. Alphas
that are significant at the 5% level are marked by filled circles. The t-statistics are adjusted using
the Newey and West (1987) method. To control for multiple hypothesis testing, the p-values are
adjusted using the Benjamini and Hochberg (1995) method. The analysis covers the study period
from January 2006 to December 2022.
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Figure 8: Out-of-Sample Importance Measure

The table reports the decrease in the annualized Sharpe ratio of the non-sparse SDF-implied MVP
as a result of setting the weight pertaining to a factor to zero. All results are based on recursive
model estimation over the sample period from January 2006 to December 2022.
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Figure 9: Out-of-Sample Alphas of Extended Factor Set

The figure shows the alphas (in %) of the 702 factors against a) the non-sparse SDF including only 54
factors and b) the non-sparse SDF including all 702 factors. The MVP weights are estimated using
only information available at time t, thus the alphas are out-of-sample. Alphas that are significant
at the 5% level are marked by filled circles. The t-statistics are adjusted using the Newey and
West (1987) method. To control for multiple hypothesis testing, the p-values are adjusted using
the Benjamini and Hochberg (1995) method. The analysis covers the study period from January
2006 to December 2022.
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Figure 10: Out-of-Sample Factor Alphas for a Subset of Liquid Options

The figure shows the alphas (in %) of the 54 factors constructed from a subset of the 50% most
liquid options at the beginning of each holding period. The MVP weights are estimated using only
information available at time t, thus the alphas are out-of-sample. Alphas that are significant at
the 5% level are marked by filled circles. The t-statistics are adjusted using the Newey and West
(1987) method. To control for multiple hypothesis testing, the p-values are adjusted using the
Benjamini and Hochberg (1995) method. The analysis covers the study period from January 2006
to December 2022.
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Table 1: Summary Statistics of Option Characteristics and Returns

The table reports summary statistics of option characteristics for the call (Panel A) and put (Panel
B) option contracts analyzed in this study. The sample covers the period from January 1996
to December 2022. The table shows the time-to-maturity (ttm), moneyness (mness), embedded
leverage (embedlev), BMS implied volatility (implvol), BMS delta, gamma, vega, and theta, as well
as the delta-hedged option return as defined in equation (12).

Panel A: Call option contracts

ttm mness embedlev implvol delta gamma vega theta r∆i,T

Mean 122.52 1.03 29.76 0.16 0.21 0.001 389.86 -117.88 -4.67
Median 91.00 0.94 24.35 0.15 0.18 0.001 312.40 -82.59 -2.56
Std 87.09 0.66 18.55 0.06 0.15 0.001 310.31 109.66 2.34
No. obs 71,253 71,253 71,253 71,253 71,253 71,253 71,253 71,253 71,253

Panel B: Put option contracts

ttm mness embedlev implvol delta gamma vega theta r∆i,T

Mean 122.84 -1.08 15.91 0.27 -0.16 0.001 346.47 -156.44 -7.05
Median 91.00 -1.08 13.96 0.26 -0.12 0.000 263.99 -120.10 -4.13
Std 86.90 0.62 8.24 0.10 0.14 0.001 293.38 123.65 2.82
No. obs 148,868 148,868 148,868 148,868 148,868 148,868 148,868 148,868 148,868
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Table 2: Performance of the SDF-implied MVP

The table reports annualized abnormal returns (in %) and t-statistics in parentheses of the non-
sparse SDF-implied MVP, estimated using L2 regularization, against the benchmark models.
The benchmark models include the CAPM (αCAPM ), an SDF estimated employing dual-penalty
(αL1−L2

), K3 (αK3), HVX3 (αHVX3), BCCSZ5 (αBCCSZ5), RPPCA3 (αRPPCA3), and IPCA3
(αIPCA3). The t-statistics, reported in parentheses, are adjusted using the Newey and West (1987)
method. The out-of-sample period is from January 2006 to December 2022.

αCAPM αK3 αHVX3 αBCCZ5 αRPPCA3 αIPCA3 αL1−L2

L2 1.40
(4.80)

0.66
(4.07)

1.53
(6.65)

1.40
(4.81)

0.30
(2.35)

1.15
(4.77)

0.34
(2.68)
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Table 3: Frontier Expansion Test

The table presents out-of-sample annualized generalized alphas (in %) derived from a time-series
regression of MV PA on MV PA,B, with MV PA representing the ”base” portfolio and MV PA,B

constituting a mean-variance efficient portfolio that invests in both MV PA and MV PB; that is,
the optimal portfolio weights are obtained by estimating b̂A,B =

(
ΣA,B

)−1
µA,B. The rows show

the MV PA and the columns show the MV PB, i.e., the row MVP is not mean-variance efficient
if the alpha is statistically significant. The t-statistics, reported in parentheses, are adjusted using
the Newey and West (1987) method. Any alpha statistically significant at the 5% level or higher
is highlighted in bold. The out-of-sample period is from January 2006 to December 2022.

MV PB

L2 L1-L2 K3 HVX3 BCCSZ5 RPPCA3 IPCA3

M
V
P

A

L2 -0.10
(-0.73)

-0.09
(-0.53)

0.16
(1.95)

-0.17
(-0.69)

0.25
(1.58)

0.05
(0.14)

L1-L2 0.12
(1.26)

0.13
(1.15)

0.02
(0.18)

-0.16
(-0.62)

0.48
(2.60)

0.16
(0.38)

K3
0.51
(3.23)

0.58
(3.50)

-0.08
(-1.36)

0.06
(0.23)

0.57
(3.13)

1.35
(2.36)

HVX3
1.71
(6.65)

1.91
(5.47)

1.50
(4.03)

0.26
(0.61)

1.62
(4.79)

3.45
(4.02)

BCCSZ5
1.17
(3.58)

1.37
(3.37)

1.24
(3.01)

-0.22
(-0.68)

1.21
(4.15)

2.69
(2.82)

RPPCA3
0.33
(2.55)

0.37
(2.54)

0.09
(0.63)

0.07
(0.79)

-0.03
(-0.13)

0.70
(2.19)

IPCA3
0.65
(1.98)

0.68
(1.62)

1.23
(2.73)

0.75
(1.58)

0.66
(1.54)

1.12
(3.91)
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Table 4: Frontier Expansion Test using Extended Set of Factors

The table presents out-of-sample annualized generalized alphas (in %) derived from a time-series
regression of MV PA on MV PA,B, with MV PA representing the “base” portfolio and MV PA,B

constituting a mean-variance efficient portfolio that invests in both MV PA and MV PB. The
portfolios MV PA and MV PB are SDF-implied MVPs estimated using L2 regularization based
on a linear factor set (zi) as well as a linear factor set, extended by quadratic (z2i ) and cubic (z3i )
characteristic transformations and first-order interactions zizj of the characteristics. The rows show
the MV PA and the columns show the MV PB. The MVP based on the factor set shown in the
rows is not mean-variance efficient if the alpha is statistically significant. The t-statistics, reported
in parentheses, are adjusted using the Newey and West (1987) method. The out-of-sample period
is from January 2006 to December 2022.

MV PB

zi z2i z3i z2i , z
3
i zizj z2i , z

3
i , zizj

M
V
P

A

zi
0.11
(0.50)

-0.10
(-0.70)

-0.22
(-1.28)

-0.04
(-1.37)

0.44
(1.28)

z2i
-0.08
(-0.98)

-0.02
(-0.21)

0.03
(0.29)

-0.08
(-0.98)

0.27
(1.40)

z3i
0.02
(0.09)

0.25
(1.06)

0.27
(0.92)

0.02
(0.09)

0.34
(1.04)

z2i , z
3
i

-0.17
(-0.71)

0.19
(0.95)

0.15
(0.64)

-0.17
(-0.71)

0.20
(0.75)

zizj
-0.04
(-1.37)

0.11
(0.50)

-0.10
(-0.70)

-0.22
(-1.28)

0.44
(1.28)

z2i , z
3
i , zizj

-0.00
(-0.01)

0.13
(1.19)

-0.15
(-1.45)

-0.15
(-1.55)

-0.00
(-0.01)
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Table 5: SDF-implied MVP Performance Depending on Market States

The table reports annualized alphas (in %) of the SDF-implied MVP against the benchmark port-
folios in different market states. The sample is divided into subperiods marked by (a) price jumps
and non price jumps, (b) volatility and non volatility jumps, (c) bear and bull markets, (d) a low,
medium, and high VIX, (e) low and high uncertainty, and (f) recessions and non recessions. Price
(volatility) jump periods are defined as holding periods in which the return of the S&P500 (VIX)
is below -4% (above 4%). Markets are classifies as either “bear” or “bull” markets if the 12-month
trailing return is below or above the historical median 12-month trailing return, respectively. The
classification into VIX regimes is based on the historical tercile distribution. The market is char-
acterized by low (high) uncertainty if the Bekaert et al. (2022) uncertainty index at the beginning
of the holding period is below (above) the historical median. Lastly, “recession” is defined using
the NBER recession dates. The t-statistics, reported in parentheses, are adjusted using the Newey
and West (1987) method. All results are based on out-of-sample estimates over the period from
January 2006 to December 2022.

# obs αCAPM αK3 αHVX3 αBCCSZ5 αRPPCA3 αIPCA3

Price jump 581
1.57
(1.90)

0.37
(0.54)

1.24
(1.75)

1.56
(1.63)

0.73
(2.24)

1.72
(1.90)

Non price jump 3654
1.39
(4.17)

0.71
(4.68)

1.56
(6.52)

1.38
(4.61)

0.27
(1.71)

1.08
(4.17)

Vol jump 1502
1.29
(2.96)

0.55
(2.21)

1.55
(3.42)

1.29
(2.20)

0.16
(0.47)

1.37
(2.96)

Non vol jump 2733
1.48
(3.00)

0.77
(3.43)

1.53
(6.00)

1.49
(4.76)

0.33
(3.37)

0.75
(3.00)

Bear market 2126
1.01
(2.35)

0.31
(1.32)

1.24
(4.38)

1.03
(2.90)

0.22
(1.17)

0.76
(2.35)

Bull market 2109
1.82
(4.50)

1.04
(4.78)

1.88
(5.64)

1.87
(4.46)

0.43
(1.80)

1.55
(4.50)

Low VIX 1280
1.50
(2.69)

0.41
(0.99)

1.40
(4.06)

1.62
(3.29)

0.06
(0.23)

1.13
(2.69)

Medium VIX 1688
1.02
(2.19)

0.13
(0.84)

0.94
(3.01)

1.06
(3.36)

0.17
(1.68)

0.63
(2.19)

High VIX 1267
1.86
(3.09)

1.62
(5.13)

2.28
(4.36)

2.20
(3.55)

0.68
(1.79)

1.64
(3.09)

Low uncertainty 2135
0.87
(3.78)

0.57
(4.67)

0.93
(3.51)

0.85
(2.50)

0.29
(1.27)

0.89
(3.78)

High uncertainty 2076
1.99
(2.76)

0.77
(2.48)

2.23
(6.44)

1.99
(4.26)

0.29
(1.52)

1.19
(2.76)

Recession 418
-1.03
(0.36)

-0.38
(-0.47)

-0.24
(-0.20)

-0.85
(-0.49)

-1.40
(-1.08)

0.44
(0.36)

Non recession 3836
1.67
(3.41)

0.72
(4.73)

1.71
(8.02)

1.70
(6.60)

0.36
(5.11)

0.78
(3.41)
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Table 6: Stock Market Factor Alphas

The table reports alphas (in %) and t-statistics of the non-sparse SDF-implied MVP against the
stock market CAPM, the Fama and French (1993) three-factor (FF3), Fama and French (2015) five-
factor (FF5), Fama and French (2018) six-factor (FFC6), the augmented q-factor (HXZ) model of
Hou et al. (2015, 2021), as well as the four-factor Stambaugh and Yuan (2017) (SY), the three-
factor Daniel et al. (2020a) (DHS), and the five-factor Daniel et al. (2020b) (DMRS) models. The
t-statistics, reported in parentheses, are adjusted using the Newey and West (1987) method. The
sample period is from January 2006 to December 2022.

CAPM FF3 FF5 FF6 HXZ SY DHS DMRS

Full period
1.34
(4.56)

1.34
(4.54)

1.37
(4.63)

1.37
(4.62)

1.36
(4.71)

1.37
(4.59)

1.34
(4.54)

1.40
(4.73)

Price jump
1.46
(1.48)

1.55
(1.65)

1.67
(1.79)

1.68
(1.82)

1.51
(1.61)

1.66
(1.74)

1.43
(1.45)

1.53
(1.56)

Non price jump
1.34
(4.43)

1.34
(4.41)

1.36
(4.46)

1.36
(4.46)

1.38
(4.67)

1.36
(4.43)

1.34
(4.43)

1.38
(4.49)

Vol jump
1.22
(2.08)

1.20
(2.04)

1.22
(2.06)

1.24
(2.08)

1.23
(2.18)

1.24
(2.09)

1.22
(2.11)

1.27
(2.22)

Non vol jump
1.44
(4.57)

1.44
(4.54)

1.48
(4.68)

1.48
(4.67)

1.46
(4.64)

1.48
(4.66)

1.44
(4.55)

1.51
(4.77)

Bear market
0.93
(2.56)

0.93
(2.57)

0.99
(2.70)

0.98
(2.68)

0.92
(2.56)

0.99
(2.69)

0.91
(2.45)

1.05
(2.90)

Bull market
1.79
(4.06)

1.78
(4.04)

1.79
(4.07)

1.80
(4.13)

1.81
(4.24)

1.80
(4.15)

1.80
(4.15)

1.79
(4.04)

Low VIX
1.43
(2.80)

1.46
(2.88)

1.51
(2.95)

1.48
(2.90)

1.38
(2.74)

1.50
(2.92)

1.36
(2.70)

1.46
(2.95)

Medium VIX
0.99
(2.90)

0.96
(2.79)

0.95
(2.77)

0.94
(2.79)

0.92
(2.59)

0.90
(2.59)

0.99
(2.96)

0.86
(2.41)

High VIX
1.81
(2.74)

1.81
(2.75)

1.88
(2.86)

1.89
(2.85)

1.96
(3.10)

1.87
(2.84)

1.85
(2.82)

2.03
(3.13)

Low uncertainty
0.83
(2.38)

0.80
(2.27)

0.79
(2.25)

0.80
(2.32)

0.85
(2.61)

0.83
(2.46)

0.84
(2.47)

0.75
(2.04)

High uncertainty
1.91
(4.09)

1.92
(4.12)

2.02
(4.32)

2.00
(4.27)

1.91
(4.10)

2.00
(4.25)

1.91
(4.05)

2.06
(4.44)

Recession
-0.66
(-0.45)

-0.66
(-0.45)

-0.67
(-0.45)

-0.65
(-0.45)

-0.45
(-0.34)

-0.71
(-0.48)

-0.64
(-0.43)

-0.27
(-0.19)

Non recession
1.64
(6.19)

1.64
(6.21)

1.66
(6.31)

1.66
(6.33)

1.65
(6.29)

1.65
(6.24)

1.63
(6.17)

1.64
(6.22)
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Internet Appendices for

“Shrinking the Cross Section of Index Option Returns”

Content

Appendix A shows that the Euler equation is valid for delta-hedged option returns. Appendix B

provides a short description of the option-based characteristics analyzed in the study. Appendix

C shows additional results from the study, including summary statistics in Appendix C.1 and

estimation results using the extended factor set in Appendix C.2. In Appendix C.3, we show

mean-variance frontier spanning test results using a rolling estimation window.
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A Delta-Hedged Option Returns & the Euler Equation

This appendix demonstrates that the Euler equation shown in equation (2) applies directly to

delta-hedged option returns as specified in equations (11) and (12), respectively. The reasoning

follows directly from the foundational probabilistic concepts discussed in well-known literature on

option pricing such as Musiela and Rutkowski (2004) and Shreve (2004). Given the option price

Fti at time ti, the risk neutral probability measure EQ, the empirical probability measure EP and

the time change δti = ti − ti−1, the expression for the option price is

Fti = exp
(
−rftiδti+1

)
EQ [

Fti+1

]
= exp

(
−rftiδti+1

)
EP [Mti+1Fti+1

]
.

(IA1)

The first line is a consequence of the Feynman-Kac formula and a deterministic risk-free interest

rate rfti , and the second line is a consequence of the Girsonav theorem via the fact that the stochastic

discount factor Mti+1 is a Radon-Nikodym derivative. It follows that

EP [Mti+1Fti+1

]
= exp

(
rftiδti+1

)
Fti . (IA2)

Similarly, the forward price of the underlying asset is16

EQ [
Sti+1

]
= EP [Mti+1Sti+1

]
= exp

(
rftiδti+1

)
Sti . (IA3)

16Assuming no dividends, without loss of generality. However, it may be shown that this proof extends straight-
forwardly to the case of dividends.
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Considering the bank account Bti = exp
(∫ ti

0 rfs ds
)
with the deterministic risk-free interest rate rfti

that is fixed in time interval (ti, ti+1), we have

EQ [
Bti+1

]
= EP [Mti+1Bti+1

]
= exp

(∫ ti+1

0
rfs ds

)
= exp

(∫ ti

0
rfs ds

)
exp

(∫ ti+1

ti

rfs ds

)
= exp

(
rftiδti+1

)
Bti .

(IA4)

Under the assumption of an option PnL Πti,ti+1 in equation (11), the conditional expectation Eti

given the filtration Fti up to time ti, and that δti =
ati,ti+1

365 , it follows that that the the conditional

expected delta-hedged PnL between time points ti and ti+1 is

EP
ti

[
Mti+1Πti,ti+1

]
= EP

ti

[
Mti+1

(
Fti+1 − Fti

)]
− EP

ti

[
Mti+1∆ti

(
Sti+1 − Sti

)]
− EP

ti

[
Mti+1r

f
ti
δti+1 (Fti −∆tiSti)

]
= EQ

ti

[(
Fti+1 − Fti

)]
− EQ

ti

[
∆ti

(
Sti+1 − Sti

)]
− EQ

ti

[
rftiδti+1 (Fti −∆tiSti)

]
=

(
exp

(
rftiδti+1

)
Fti − Fti

)
−
(
exp

(
rftiδti+1

)
Sti − Sti

)
− rftiδti+1 (Fti −∆tiSti)

=
(
exp

(
rftiδti+1

)
− 1− δti+1r

f
ti

)
(Fti −∆tiSti) .

(IA5)

After applying the Taylor series expansion of exp
(
rftiδti

)
= 1 + rtiδti +O2

(
rftiδti

)
≈ 1 + rtiδti , it

follows that

EP
ti

[
Mti+1Πti,ti+1

]
=

(
exp

(
rftiδti+1

)
− 1− δti+1r

f
ti

)
(Fti −∆tiSti)

=
(
1 + δti+1r

f
ti
− 1− δti+1r

f
ti

)
(Fti −∆tiSti) = 0.

(IA6)
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The Euler equation thus holds for the delta-hedged option PnL between time periods ti and ti+1,

and by extension for the option return. From the law of iterated expectation, the argument extends

to the option return for the entire holding period.
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B Variable Definitions

Table 1: Variable Description

The table provides definitions of the characteristics used to create characteristic-based option factors studied in this paper.
“Symbol” in the first column refers to the abbreviations used in the paper.

Symbol Characteristic Description

bidask Bid-ask spread Following Bali et al. (2023), the bid-ask spread is defined as 2×(bid−ask)
bid+ask .

delta Option delta Following Black and Scholes (1973), the sensitivity of the option with respect

to a linear change in the underlying asset.

embedlev Embedded leverage Following Karakaya (2014) and Frazzini and Pedersen (2022), the embedded

leverage of an option is defined as the ratio of the underlying’s spot price to

the option’s mid price, multiplied by the absolute option delta.

gamma Option gamma Following Black and Scholes (1973), the sensitivity of the option with respect

to a quadratic change in the underlying. It is also the sensitivity of delta with

respect to linear changes in the underlying.

implkurt Implied kurtosis Fourth moment of the probability distribution of the returns of the underlying

asset.

implskew Implied skewness Third moment of the probability distribution of the returns of the underlying

asset.

implvol Implied volatility Black and Scholes (1973) implied volatility.

implvol ch Change in implvol The percentage change in Black and Scholes (1973) implied volatility.
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Table 1: Variable Definitions (continued)

Symbol Characteristic Description

max Maximum option return Following Liu et al. (2022), we measure the option lottery-like characteristics

by using the highest daily option return in the most recent month.

maxivol Maximum implied volatility Following Liu et al. (2022), we measure the option lottery-like characteristics

by using the highest daily implied volatility in the most recent month.

mcap Market capitalization Following Büchner and Kelly (2022) and Frazzini and Pedersen (2022), the

market capitalization is the product of open interest and the option’s mid

price.

midprice Option price Following Bali et al. (2022), the mid price of the option.

mness Moneyness Following Bali et al. (2023), moneyness is the ratio of the strike price to the

spot price of the underlying.

ret1 Past-month return Following Jegadeesh (1990) and Heston et al. (2022), we include the return of

the previous holding period.

openint Open interest Following Bali et al. (2023), the open interest of the option.

speed Option speed Following Black and Scholes (1973), the sensitivity of the option with respect

to a cubic change in the underlying. It is also the sensitivity of gamma with

respect to a linear change in the underlying and the sensitivity of delta with

respect to a quadratic change in the underlying.

theta Option theta Following Black and Scholes (1973), the time-decay of the option value.
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Table 1: Variable Definitions (continued)

Symbol Characteristic Description

ttm Time-to-maturity Following Büchner and Kelly (2022), time-to-maturity is the number of days

to maturity.

turnover Option turnover Following Bali et al. (2023), turnover is the ratio of the option’s volume to its

open interest.

vanna Option vanna Following Black and Scholes (1973), the sensitivity of delta with respect to a

change in the implied volatility.

vega Option vega Following Black and Scholes (1973), the sensitivity of the option with respect

to a linear change in the implied volatility.

volga Option volga Following Black and Scholes (1973), the sensitivity of the option with respect

to a quadratic change in the implied volatility. It is also the sensitivity of vega

with respect to a linear change in the implied volatility.

volume Option volume Following Bali et al. (2023), the daily trading volume of an option.

volvol Volatility of implvol Following Ruan (2020) and Horenstein et al. (2022), the standard deviation

of an option’s implied volatility in the past month.

61



C Additional Results

C.1 Factor Summary Statistics

Table 1: Average Factor Returns

The table reports the average annualized raw and CAPM-adjusted factor returns (in %), as well
as t-statistics and p-values (in %). The t-statistics are adjusted using the Newey and West (1987)
method. To control for multiple hypothesis testing, p-values are adjusted using the Benjamini
and Hochberg (1995) method. Average returns and CAPM alphas are reported in bold if they are
statistically significant at the 5% level, after adjusting the p-values to control for multiple hypothesis
testing. The study period is from January 1996 to December 2022.

Raw CAPM-adjusted

Avg (%) t-stat p-value Avg (%) t-stat p-value

bab -0.03 -1.09 39.05 0.05 2.25 5.82

bidask -0.54 -4.50 0.00 -0.14 -1.09 41.25

bidask:put -0.05 -0.35 78.53 0.34 3.09 0.90

delta 0.62 5.08 0.00 0.34 3.27 0.52

delta:put -0.09 -0.65 58.93 0.32 2.72 1.95

embedlev 0.10 0.85 47.31 -0.20 -2.06 8.32

embedlev:put -0.21 -1.72 14.75 -0.54 -5.20 0.00

fmom1 0.25 4.82 0.00 0.27 4.30 0.02

fmom6 0.16 3.16 0.43 0.15 2.64 2.22

gamma -0.51 -3.91 0.04 -0.24 -1.14 40.37

gamma:put -0.35 -3.08 0.54 -0.01 -0.11 93.22

implkurt 0.09 3.18 0.43 0.11 3.50 0.26

implkurt:put 0.03 0.80 49.56 0.03 0.87 47.98

implskew -0.04 -2.02 8.30 -0.04 -1.96 9.36

implskew:put -0.03 -1.16 37.77 -0.03 -1.07 41.56
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Table 1: Average Factor Returns (continued)

Raw CAPM-adjusted

Avg (%) t-stat p-value Avg (%) t-stat p-value

implvol -0.02 -0.19 86.84 0.07 0.45 71.89

implvol ch 0.35 3.70 0.07 0.24 1.99 8.93

implvol ch:put 0.12 1.41 26.03 0.13 1.15 40.37

impvol:put -0.11 -1.04 40.39 0.19 2.00 8.93

level 1.40 3.83 0.04 0.04 0.14 92.55

maturity slope 0.26 1.06 40.04 0.79 3.51 0.26

max -0.45 -3.85 0.04 -0.13 -0.85 48.46

max:put -0.10 -0.89 47.13 0.23 2.05 8.32

maxIVOL -0.10 -1.22 35.59 -0.15 -1.30 33.50

maxIVOL:put -0.10 -1.44 25.47 -0.18 -2.48 3.27

mcap -0.30 -3.95 0.04 -0.05 -0.61 63.33

mcap:put 0.04 0.50 69.56 0.27 3.55 0.26

midprice -0.53 -4.15 0.02 -0.11 -0.75 54.33

midprice:put 0.04 0.29 82.12 0.44 3.81 0.11

mness -0.03 -0.21 86.23 -0.15 -0.93 47.55

mness:put 0.11 0.85 47.31 -0.30 -2.51 3.11

openint -0.08 -2.08 7.75 -0.04 -0.90 47.62

openint:put 0.04 0.97 42.88 0.06 1.20 38.96

ret1 0.15 2.01 8.30 0.09 1.12 40.66

ret1:put 0.08 1.00 41.81 0.09 0.96 46.87

skewness 0.65 2.01 8.30 0.10 0.31 79.91

speed 0.49 3.83 0.04 0.18 1.75 14.28
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Table 1: Average Factor Returns (continued)

Raw CAPM-adjusted

Avg (%) t-stat p-value Avg (%) t-stat p-value

speed:put -0.19 -2.09 7.75 -0.36 -4.88 0.00

theta 0.69 6.09 0.00 0.34 2.89 1.39

theta:put 0.32 2.66 1.81 -0.05 -0.43 71.89

ttm 0.24 3.29 0.30 0.29 3.92 0.08

ttm:put 0.38 5.03 0.00 0.41 5.40 0.00

turnover -0.24 -6.05 0.00 -0.18 -2.86 1.44

turnover:put -0.21 -5.06 0.00 -0.15 -3.00 1.12

vanna 0.32 2.65 1.81 0.11 0.90 47.62

vanna:put -0.03 -0.43 73.72 -0.04 -0.48 70.78

vega -0.37 -2.99 0.70 -0.01 -0.09 93.22

vega:put 0.15 1.14 38.11 0.52 4.65 0.00

volga 0.49 5.72 0.00 0.20 2.65 2.22

volga:put 0.18 1.94 9.43 -0.08 -1.00 45.07

volume -0.25 -6.37 0.00 -0.18 -2.97 1.17

volume:put -0.17 -4.17 0.02 -0.10 -2.13 7.56

volvol -0.01 -0.13 90.05 -0.05 -0.57 65.62

volvol:put -0.11 -1.12 38.11 -0.27 -2.80 1.64
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C.2 Extended Factor Set

Figure 1: R2
cvs from Dual-Penalty Specification for Extended Factor Set

The figure presents cross-validation R2
cv values for models employing varying degrees of L1 and L2

regularization, applied to an extended factor set of 702 factors. The x-axis represents the degree of
L2 regularization, while the y-axis portrays the degree of L1 regularization. The level of shrinkage
(L2) is expressed as the root expected squared Sharpe ratio κ and the degree of sparsity (L1) is
represented by the number of factors that have a non-zero coefficient in the SDF. Elevated R2

cv

values are denoted by warmer colors. The study covers the period from January 1996 to December
2022.
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Figure 2: SDF Coefficients in Extended Factor Set

The figure shows the coefficients of the fifteen factors that have the largest (in absolute terms)
weight in the SDF using the L2-only penalty estimator, applied to the extended set of 702 factors.
Second (third) order polynomials of the characteristics are denoted by charname2 (charname3).
The coefficients are sorted in descending order based on their absolute SDF coefficient. The sample
period is from January 1996 to December 2022.
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C.3 Variation in Training Window

In the main analyses, we estimated the SDF coefficients using an expanding time window. However,

how do the results change if we assume a fixed rolling window? Table 2 reports the generalized

alphas of this exercise. The findings are qualitatively similar to those reported in Table 3; that is, a

combination of the MVP implied by the non-sparse SDF and any other benchmark MVP does not

statistically significantly outperform the MVP implied by the non-sparse SDF, indicating mean-

variance efficiency. In contrast, the other MVPs do not exhibit mean-variance efficiency, which
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supports the findings from the main analyses.

Table 2: Frontier Expansion Test Using Rolling Estimation Window

The table presents annualized generalized alphas (in %) derived from a time-series regression of
MV PA on MV PA,B, with MV PA representing the ”base” portfolio and MV PA,B constituting
a mean-variance efficient portfolio that invests in both MV PA and MV PB. The weights in the
MVP are estimated using a rolling estimation window with a fixed length of ten years. The t-
statistics, reported in parentheses, are adjusted using the Newey and West (1987) method. Any
alpha statistically significant at the 5% level or higher is highlighted in bold. The out-of-sample
period is from January 2006 to December 2022.

MV PB

L2 L1-L2 K3 HVX3 BCCSZ5 RPPCA3 IPCA3

M
V
P

A

L2 -0.06
(-0.13)

-0.00
(-0.01)

-0.20
(-0.59)

-0.92
(-1.80)

-0.94
(-1.47)

-0.42
(-0.55)

L1-L2 -0.13
(-0.29)

-0.34
(-1.44)

-0.51
(-1.55)

-0.67
(-1.50)

-0.86
(-1.39)

-0.21
(-0.36)

K3
2.14
(5.76)

2.03
(5.56)

-0.22
(-0.49)

0.49
(0.93)

1.49
(4.62)

2.18
(3.08)

HVX3
2.60
(7.50)

2.69
(7.08)

0.67
(1.52)

0.32
(0.50)

1.84
(6.27)

1.96
(2.04)

BCCSZ5
1.54
(2.91)

1.96
(3.73)

0.61
(1.03)

-0.44
(-1.24)

1.35
(4.67)

1.33
(1.54)

RPPCA3
2.14
(4.34)

2.22
(4.55)

0.14
(0.62)

0.21
(1.61)

0.25
(0.56)

1.20
(1.58)

IPCA3
0.73
(0.87)

1.08
(1.71)

0.74
(1.50)

-0.92
(-1.70)

-0.70
(-0.99)

0.70
(1.82)
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