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1 Introduction

Over time, the risk landscape has changed significantly, leading to updates in the underlying
models. Recently, the presence of extreme jump risks and the correlation of risks within a
market have become more important. These factors are crucial in high volatility markets
like oil and electricity, and in hedging against stock market crashes (e.g., Caldana and Fu-
sai, 2013). Consequently, a significant part of the high equity and variance risk premiums
observed today is compensation for these factors (Bollerslev and Todorov, 2011). Outside
the classical financial market, these factors are also becoming more important, especially
regarding societal risks. The increasing frequency and severity of natural disasters due to
climate change, and cyber threats from global networking and digitalization, have broadened
the scope of private risk-sharing beyond conventional property and casualty risks. This shift
has moved away from relying solely on insurance companies, recognizing the collaborative
nature of risk management. Insurance-linked securities now involve active participation from
the capital markets. Additionally, the growing severity of losses, as seen with events like the
Covid-19 pandemic, highlights the need for government involvement in managing such crises
(e.g, Gründl et al., 2021; Braun et al., 2023).

The pricing of extreme risks is based on three key principles (Zanjani, 2002). First, share-
holders may not be able to cover large, unexpected losses. Second, shareholders expect to
be compensated for the risks they take, which ultimately affects policyholders. Third, pol-
icyholders care about the risk of the company going insolvent. Calibrating these factors to
real-world data is challenging, and the resulting pricing often lacks a straightforward solution
(e.g., Zanjani, 2002) or existing benchmark markets (e.g., Gründl et al., 2021).1 However,
most literature on insurable risks, including Zanjani (2002), still focuses on classic expected
value theory. A model that consistently includes the market environment, correlation struc-
tures, and jump risks, accounting for higher-order factors, is still missing.

Based on this gap, the contribution of this paper is threefold. First, this study updates
the four distinct risk categories from Cummins (2006) to reflect today’s market conditions,
assigning mathematical components to each. Second, the study introduces a new model for
determining market risk premiums. This model, integrated into established option models,
deviates from traditional approaches and is more suited to emerging risks. Grounded in the
model proposed by Doherty and Garven (1986), it includes shareholders and policyholders
and accounts for government frictions like taxes. It uses various option pricing literature to
explain the characteristics of individual risk classes while maintaining a consistent frame-
work. Central to this analysis are models from Margrabe (1978), focusing on the exchange
dynamics of two risky assets, and Merton (1976), incorporating jump risks. Additionally, the
closed-form solution by Cheang and Chiarella (2011) integrates these models effectively. The
underlying actuarial principle is the measure transformation as in Gerber and Shiu (1994)
and Wang (2000), which can be described as probability distortion. While this distortion is
unique in simpler cases, it is not the case for extreme events. Third, the paper demonstrates

1The lack of high-frequency extreme risk data or models for calibrating frictions and risk premiums has led
to the frequent use of unsuitable models in the literature, such as those by Fama and French (1993) or Fama
and French (2015) for financial institutions (e.g., Cummins and Phillips, 2005). Therefore, it is necessary to
merge or expand model approaches as discussed in more detail in Braun et al. (2023).
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the practical application of this new methodology using real loss estimates. By calibrating
model parameters with market data, the paper identifies market prices for various risks, fo-
cusing on jump components often transferred through cat bonds or cyber bonds. Despite
friction and jump risk, precise market calibration allows for the calculation of unique prob-
ability distortion through measure transformation of individual markets or entities, which
enables a comparison of the risk appetite across them.

This paper is structured as follows. Section 2 introduces the model, defines its bound-
aries, and describes the connection to existing pricing models. Section 3 shows the market
application. Section 4 concludes.

2 Model

2.1 Risk categories

The risk categories are based on Cummins (2006) and can be summarized in four distinct
classes:

• Locally insurable: Pertaining to independent risks characterized by moderate standard
deviations per risk and a substantial number of policies, such as the U.S. market for
personal automobile insurance. Local insurers can effectively cover these losses.

• Globally insurable: Encompassing risks that are locally dependent but globally indepen-
dent, exemplified by the risk of tornadoes in the American Midwest versus Australia.
Local insurers lack the capacity to cover such losses, but global reinsurers can. Conse-
quently, these risks are diversifiable on a global scale through reinsurance.

• Globally diversifiable: Referring to risks with low frequency and very high severity,
such as a 100 billion event in Florida or California. The capacity of insurance and
reinsurance companies may prove insufficient to cover such events, but these risks can
be globally diversified through participation in capital markets.

• Globally undiversifiable: Describing risks of such severity that they may resist global
diversification, even through capital markets. For instance, a severe earthquake in
Tokyo with losses ranging from 2.1 to 3.3 trillion. While global securities markets might
absorb a fraction of such a loss, complete diversification of the full loss is unlikely.

Despite the economic coherence and comprehensiveness of these categories, which encom-
pass all relevant private risk bearers, it is essential to address the underlying mathematical
nuances. Cummins falls short in today’s market environment, particularly for the last two
categories.2

Local insurable risks follow a straightforward framework based on the law of large num-
bers, assuming the independence of losses within a loss portfolio. However, this independence

2Cummins defines the last two catastrophes as events that violate the principal insurability condition and
may be globally diversifiable through capital markets if other conditions are satisfied. He does not specify
any mathematical concepts, as he does for the first two categories.
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does not apply when examining globally insurable risks from a local perspective. On a global
scale, these risks exhibit no interdependence, allowing the creation of a loss portfolio of inde-
pendent losses, which are then transferred to reinsurers due to their size. Thus, while there
may be variations in the sizes of loss portfolios, local and global insurable risks are mathemat-
ically comparable and can be modeled using right-skewed and independent random variables
(e.g., Eling, 2012).

Globally diversifiable and globally undiversifiable risks share characteristics of low fre-
quency and high severity, with heavy tail events significantly influencing these risk profiles.
They follow a structure of jump processes, such as a compounded Poisson process described
by Merton (1976). A key distinction lies in the severity of globally undiversifiable risks, which
can directly impact macroeconomic fundamentals. These risks uniquely correlate with the
capital market and can trigger worldwide shocks, as seen with the Covid-19 pandemic (e.g.,
Gründl et al., 2021; Braun et al., 2023). Mathematically, in the first case, the occurrence
of jumps and the jump size are uncorrelated, while in the latter case, there is a joint jump
process with correlated jump sizes.

2.2 Option model

Inspired by Doherty and Garven (1986), a single-period model is considered. In t = 0
shareholders contribute equity S0 and policyholders pay premiums P to cover the stochastic
loss portfolio L̄. The shareholder’s opening cash flow is:

Y0 = S0 + P,

where the cash flow is invested at a risky rate r̄. The terminal cash flow is:3

Ȳ1 = (1 + r̄)
(
S0 + P

)
.

At the end of the period, the policyholders claim L̄ ≥ 0, and the government (or other
organizations such as supervisory authorities) claims frictional costs like monitoring, agency,
tax, and liquidity T̄1 ≥ 0. The policyholders receive the payment:

H̄1 = min(L̄, Ȳ1)

= Ȳ1 −max(Ȳ1 − L̄, 0),

and the additional frictional costs are:

T̄1 = max[τ(Ȳ1 − L̄), 0],

where τ is the rate for frictional costs.4

3Doherty and Garven (1986) incorporate an adjustment to the premium investment by applying a coeffi-
cient for fundraising. This adjustment compensates for the temporal misalignment between the model period
and the average delay between premium receipt and claims payment. For the sake of model simplicity, this
adjustment is not included here.

4In the context of Doherty and Garven (1986), τ signifies the corporate tax rate, exclusively applied to
income. Thus, T̄1 = max[τ(Ȳ1 − Y0 + P − L̄), 0]. However, this depiction is excessively limiting, especially
concerning capital market involvement and overall capital costs in the context of jump risk, as discussed in
Zanjani (2002). Therefore, this aspect is further expounded upon here.
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Both claims exhibit cash flows analogous to a European call option,5 so the present values
are:

H0 = V (Ȳ1)− C(Ȳ1; L̄)

T0 = τC(Ȳ1; L̄),

where V (·) is a present valuation operator and C(A;B) is the current market value of a
European call option with a terminal value A and exercise price B.

The present market value of the shareholder’s return on equity, Ve, is the difference
between the market value of the portfolio, V (Ȳ1), on the one side, and the present value of
the policyholders’ claims and the present value of the frictional costs on the other side:

Ve = V (Ȳ1)−H0 − T0

= C(Ȳ1; L̄)− τC(Ȳ1; L̄).

In summary, shareholders hold a long position in a call option on the pre-frictional terminal
value of the asset portfolio and a short position in a call option on the frictions of that
portfolio.

Risk transfer prices are determined to yield a fair return to shareholders, achieved when
the current market value of the equity claim equals the initial investment. As Ȳ1 and Y0 are
functions contingent on P , the objective is to identify the premium P ∗ that satisfies:

Ve = C(Ȳ1(P
∗); L̄)− τC(Ȳ1(P

∗); L̄)

= S0.

Calculating P ∗ necessitates employing a suitable option-pricing framework. While Doherty
and Garven (1986) establish pricing relationships within the discrete-time, risk-neutral-
valuation framework of Rubinstein (1976), focusing on two special cases with (log-) normally
distributed stochastic components6, this study extends the analysis to stochastic processes
and accounting for jump risks. Given the stochastic nature of the exercise price, conventional
models like Black and Scholes (1973) are impractical. In a globally expanding world with
heightened climate risks and population growth, emphasis on global diversification, including
capital markets, and consideration of tail risk becomes increasingly crucial.

2.3 Pricing the option

Consider tradable assets X1 and X2 under a probability measure P. Extending the option
price formula from Black and Scholes (1973), Margrabe (1978) formulated a model allowing
the exchange of two risky assets Xi. It is assumed that all returns come from capital gains

5The cash flow of a European call option is CFcall = max(A − B, 0) with terminal value A and exercise
price B.

6Distribution assumptions like the normal distribution prove inadequate, as highlighted by Eling (2012).
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and that no dividends are distributed.7 The dynamics for each asset are expressed as:

dXi

Xi

= µidt+ σidWi,t i ∈ {1, 2},

where µi is the instantaneous expected return per unit time, σi is the instantaneous volatility
per unit time and both assets follow a Brownian motion dWi,t with correlation ρ. This setting
has the closed-form solution:

C(X1, X2) = X1Φ(d1)−X2Φ(d2)

with d1 =
ln(X1

X2
) + 1

2
σ2(T − t)

σ
√
T − t

d2 = d1 − σ
√
T − t.

T − t represents the difference between the exercise period and the present period, Φ(·) is
the cumulative standard normal density function, and σ2 = σ2

1 − 2σ1σ2ρ+ σ2
2.

8

Globally diversifiable and globally undiversifiable risks are characterized by low frequency
and high-severity events that fall beyond the scope of Margrabe (1978). The emergence of
globally undiversifiable risk is inherently tied to economic fundamentals, indicating that not
only does the loss portfolio but also the asset side exhibit a correlated downside risk. Mod-
eling heavy tail risk involves incorporating jump processes, aligning with the conceptual
framework established in Merton (1976). Unlike Margrabe, Merton’s model does not con-
sider the exchange of two risky assets but follows the methodology of Black and Scholes.
Consequently, a synthesis of both approaches becomes essential in this context.

Let Nt be a Poisson process with a constant arrival rate of jumps λ, shared by both stocks.
The bivariate process Y = (Y1, Y2)

T represents the jump sizes, taking values y = (y1, y2)
T ∈

R2. The jump sizes Yn are independently and identically distributed as multivariate normal
N (α,ΣY ), where α = (α1, α2)

T , and the covariance matrix ΣY is given by:

ΣY =

(
δ21 ρY δ1δ2

ρY δ1δ2 δ22

)
with ρY representing the correlation between the jump sizes Y1 and Y2. The expected pro-
portional common jump sizes are expressed as:

κi = EP[exp(Yi)− 1)] =

∫
R
[exp(Yi)− 1]mP(dyi) i ∈ {1, 2},

where mP(dyi) is the density of Yi (e.g., Merton, 1976).
Next, let Ni,t be a Poisson process with a constant arrival rate of jumps λi and jump size

Zi, taking values zi ∈ R for i ∈ {1, 2}. These processes are uncorrelated and specific to each

7The examination of dividend payout, as discussed in papers such as Cheang and Chiarella (2011), can
be easily incorporated into the model. However, since it does not constitute a central core here, it is omitted
to prevent additional complexity, but discussed in Appendix A.2.

8For σ2 = σ2
1 and σ2 = 0, the formula from Black and Scholes (1973) is obtained.
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asset. The idiosyncratic jump sizes are independently and identically normal-distributed as
N (αii, δ

2
ii). The expected proportional unique jump sizes are given by:

κZi
= EP[exp(Zi)− 1] =

∫
R
[exp(Zi)− 1]mP(dzi) i ∈ {1, 2},

where mP(dzi) is the density of Zi.
In summary, for each asset, the n-th common jumps Y1,n and Y2,n occur simultaneously,

governed by the same Poisson arrival process Nt. These jointly occurring jumps can be linked
to macroeconomic shocks in the system, representing globally undiversifiable risks. On the
other hand, the m-th jump Z1,m or k-th jump Z2,k, specific to the i-th asset, is influenced
by the Poisson arrival process Ni,t. Jumps unique to each stock can be attributed solely to
idiosyncratic shocks for that particular asset, defining globally diversifiable risks. The return
dynamics of the assets can be expressed as:

dXi

Xi

=(µi − λκi − λiκZi
)dt+ σidWi,t

+

∫
R
[exp(yi)− 1]p(dyi, dt) +

∫
R
[exp(zi)− 1]p(dzi, dt) i ∈ {1, 2},

where p(·, dt) is the Poisson measure. Poisson measures and the bivariate Wiener process are
independent. The stock prices are given by the solution:

Si,t = Si,0 exp

((
µi − λκi − λiκZi

− σ2
i

2

)
t+ σWi,t +

Nt∑
n=1

Yi,n +

Ni,t∑
m=1

Zi,m

)
i ∈ {1, 2}.

To achieve a suitable and fair evaluation of the final payoff conditioned on information
about the underlying asset prices, the probability measure P is transformed to Q using the
transformation proposed by Esscher (1932), see Appendix A.1. After applying the transfor-
mation, the change in the intensity is defined by:

λ̃ = λ exp(υ)EP[exp(γ
TY )]

λ̃1 = λ1 exp(υ1)EP[exp(β1Z1)]

λ̃2 = λ2 exp(υ2)EP[exp(β2Z2)],

and the expected jump sizes are transformed to:

κ̃i = EQ[exp(Yi)− 1] i ∈ {1, 2}
κ̃Zi

= EQ[exp(Zi)− 1] i ∈ {1, 2}.

Hence, under Q, the distribution of the jump sizes also changes. Yn remains independently
and identically multivariate normally distributed with α̃ = α+ΣY γ; the jump sizes Zi,k are
independently and identically normally distributed with α̃ii = αii + δ2iiβi for i ∈ {1, 2}.

The parameters υ,γ for the joint process, and υi, and βi with i ∈ {1, 2} for the distinct
processes, are fundamental factors in the transition from P to Q. The market, comprising
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stocks with jump components, is inherently incomplete following the sense of Harrison and
Pliska (1981). When accounting for market prices of jump risks, multiple equivalent mar-
tingale measures emerge, leading to different option prices. For instance, if all factors equal
zero, the scenario is akin to Merton (1976) where all jump risks are unpriced. If γ = βi = 0,
while the other factors differ from zero, changes occur in jump-arrival intensities but not in
jump-size distributions under the measure transformation. If υ and υi equal the logarithms
of their moment-generating functions under P, jump-arrival intensities remain unchanged
despite changes in jump-size distributions under the measure transformation. Subsequently,
attention is directed toward these parameters in the calibration to establish the market risk
premium for the defined risk classes, underscoring their pivotal role in the model.

For the derivation of a closed-form option pricing formula considering these factors, the
money account is assumed as the numeraire (see, e.g., Geman et al., 1995). A derivation of
the option price formula can be found in Cheang and Chiarella (2011), so the proofs will not
be repeated here. The notations were selected according to the paper. The dynamics of the
asset prices under Q are expressed as:

Xi

Xi

= rdt+ σidW̃ i, t+

∫
R
[exp(yi)− 1]q(dy, dt) +

∫
R
[exp(zi)− 1]q(dzi, dt) i ∈ {1, 2},

where W̃i,t denotes standard Brownian motion components under Q, and q represents the
Poisson measures under Q. Therefore, the option price for the exchange of the two assets
can be formulated as:

C(S1, S2) =
∑
k

∑
m

∑
n

exp
(
− (λ̃1 + λ̃2 + λ̃)(T − t)

)(λ̃1(T − t))k

k!

(λ̃2(T − t))m

m!

(λ̃(T − t))n

n!

×

[
S1 exp

(
− (λ̃1κ̃Z1 + λ̃κ̃1)(T − t) + kα̃11 +

kδ211
2

+ nα̃1 +
nδ21
2

)
Φ(d1,t,k,m,n)

−S2 exp
(
− (λ̃2κ̃Z2 + λ̃κ̃2)(T − t) +mα̃22 +

mδ222
2

+ nα̃2 +
nδ22
2

)
Φ(d2,t,k,m,n)

]
where:

d1,t,k,m,n =
ln(S1

S2
) + (−λ̃(κ̃1 − κ̃2)− λ̃1κ̃Z1 + λ̃2κ̃Z2)(T − t) + µk,m,n +

σ2
k,m,n(T−t)

2

σk,m,n

√
T − t

d2,t,k,m,n = d1,t,k,m,n − σk,m,n

√
T − t,

with:

µk,m,n = k(α̃1,1 +
δ21,1
2

)−m(α̃2,2 +
δ22,2
2

) + n(α̃1 − α̃2 +
δ2

2
)

σ2
k,m,n = σ2 +

kδ211
T − t

− mδ222
T − t

+
nδ2

T − t
,
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where:

δ2 = δ21 + δ22 + ρY δ1δ2.

In the absence of jump risk, when α̃i = α̃ii = 0 and δi = δii = 0, the jump intensity be-
comes zero, resulting in κ̃i = κ̃Zi

= 0 for i ∈ {1, 2}. Consequently, the option pricing formula
of Margrabe (1978) is received, returning to the original model utilized at the beginning of
the section.

Given that this paper examines a single-period model, the subsequent content adheres to
the condition of T − t = 1.

2.4 Alternative models and limits

To facilitate a comparison with the newly proposed option model, a standard model from
expected value theory and an extension by Zanjani (2002) is presented. To maintain sim-
plicity, no discounting is applied in this section. The standard model acts as a benchmark in
the empirical analysis of the paper and the premium is defined as the expected loss:

P = E[L̄].

This expression can be further expanded through linear scaling, for example, to accommodate
frictional costs.

As the benchmark model does not incorporate insolvency or jump risk, t and consequently,
does not include a risk premium, one can compute the risk premium by building the difference
between the option model and the benchmark model:

risk premium = Poption model − PBenchmark model.

To establish uniform coverage, the loss distribution for the benchmark model is truncated.
Zanjani (2002) introduce an extension to the standard model, focusing on the deter-

mination of (catastrophic) risk premiums. In his work, Zanjani highlights three primary
considerations. Firstly, insurers may default due to heavy-tailed losses. Secondly, the cost
associated with holding equity capital must be covered by premiums. Lastly, customers care
about the insurer’s risk of insolvency. According to Braun et al. (2023), the model can be
summarized as follows:

P = E[L̄]− E[D] + c.

Here, D denotes the difference between the expected payout and the realized payout in the
event of insolvency:

D = max[L̄− Ȳ1, 0].

The cost of equity, denoted by c, is expressed as:

c = (τ + rrisk)S0.
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Here, rrisk signifies a risk premium determined by the correlation between loss and the capital
market. This correlation is often assumed to be zero or close to zero (e.g., Cummins and
Harrington, 1985; Froot et al., 1995; Zanjani, 2002). However, amidst the Covid-19 crisis,
scholars like Gründl et al. (2021) and Braun et al. (2023) have begun to calibrate this term
more generally. There is currently no definitive evidence regarding the specific form of this
factor, e.g., whether it follows a linear pattern, e.g., Gründl et al. (2021) or exhibits concavity
concerning the amount of risk, e.g., Braun et al. (2023).

Both alternative pricing models rely exclusively on first-order terms, while the new option
model not only incorporates first-order terms but also defines second-order terms as significant
price drivers. Notably, terms related to the market environment are absent in the alternative
models. While both models overlook market and loss uncertainties, the benchmark model
fails also to consider any insolvency risks, whereas the model by Zanjani (2002) concentrates
solely on the insolvency risk for policyholders without addressing the corresponding risk for
shareholders.9

All pricing models should produce identical outcomes when jump risks, insolvency risks,
and other frictions are removed. In such scenarios, the premium should correspond to the
expected loss. This market is distinguished by either an infinite amount of equity or no
variance.

Lemma 1. Under the assumptions of a frictionless market without insolvency and jump risk,
it is necessary for all pricing models to satisfy:

lim
S0→∞

P = E[L̄], and lim
σ→0

P = E[L̄].

Proof. See Appendix A.3.

With Lemma 1 established, the models exhibit convergence in a frictionless market with-
out insolvency and jump risks. Additionally, the novel option model demonstrates its ca-
pability to incorporate insolvency risks and jump risks into pricing within market contexts
where the alternative models fall short. The option model provides important insights into
the potential risk transfer, especially concerning jump risks, by examining the limit behavior.

Lemma 2. In a frictionless market without insolvency risk but with a positive probability
of jump occurrences, the influence of jump risk is negligible, and consequently, it remains
unpriced. The premium equals the expected loss:

lim
S0→∞

P = E[L̄].

Proof. See Appendix A.3.

Zanjani’s model elucidates that in an insolvency-free market context, insurability of cor-
related jump risks is not feasible. In the presence of correlated jump risks, where rrisk > 0,
it follows that as S0 tends toward infinity, P also tends toward infinity. This underlines the
limits of a linear (CAPM) approach when dealing with jump risks.

9To adequately account for these factors, they would need to be encompassed within rrisk to prevent their
neglect. However, this is not included in the definition of the factor.
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3 Risk premiums in the market

3.1 Locally insurable

The shareholders’ return is contingent upon the performance of the S&P 500 index. Ac-
cording to Morningstar (2023), the annual total return over the past decade has averaged by
approximately 9%, accompanied by a standard deviation of 15%. The assessment of locally
insurable risk relies on US indemnity losses, as documented in Frees and Valdez (1998). The
dataset comprises 1500 general liability claims, each representing the indemnity payment
in USD. For scaling purposes, the data is divided by 1000, thus TUSD instead of USD is
considered. This claims dataset is accessible through the R packages copula and evd. The
expected loss per claim is 41.21 TUSD, with a standard deviation of 102.75 TUSD.

Figure 1 provides an overview of the premium to the expected loss for the benchmark
model, the option model without frictions, and the option model involving frictions.10 It
is observed that the premium increases as the insolvency risk decreases and the higher the
insolvency risk, the larger the risk premium. When shareholders supply sufficient equity
to almost certainly cover the loss, the benchmark, and the option model converge to the
expected loss (see Lemma 1). Frictions, particularly in tail risk, have an exponential effect
on the premium. This is due to the substantial equity required for tail risk coverage, which
consequently elevates costs. The onset of this growth varies depending on the magnitude of
friction.

Figure 1: Premium for different market scenarios.

Figure 2 provides an overview of the risk premium in relation to the expected loss for
(a) various market volatilities and (b) different loss volatilities. It is evident that as market
volatility decreases, the risk premium increases. This is logically sound, as shareholders seek
to invest their equity more securely, and policyholders, in turn, must pay a higher premium
for the increased security. On the other hand, when the loss becomes more volatile, the risk
premium also rises. This is reasonable, as higher loss volatility implies greater uncertainty
and insolvency risk for shareholders, and with increasing uncertainty, shareholders demand
a higher risk premium.

10A comparison with the model of Zanjani (2002) will also be implemented in a later version.

11



(a) Changing market volatility. (b) Changing loss volatility.

Figure 2: Risk premium for different market and loss volatilities.

Hence, the model presented reflects the price dynamics for locally insurable risks that
are prevalent in the insurance markets. Firstly, the assessment of payment default risk is of
importance for policyholders. Secondly, the pricing mechanisms in the insurance markets are
influenced in particular by insolvency risk and frictional costs. Thirdly, the risk premium is
subject to the dynamic interplay of market volatility, loss uncertainty, and insolvency risk.

3.2 Globally insurable

Data sourced from Grinsted et al. (2019) encompasses the majority of United States hur-
ricanes dating back to the early 20th century. In this section, extreme events are omitted,
excluding the 10% of the most potent hurricanes (see Braun et al., 2023). Given the vulnera-
bility of Texas and North Carolina to hurricanes and the absence of historical data indicating
a hurricane simultaneously impacting both states (uncorrelated risk), these two states are
used for the analysis. Following the data, Texas exhibits an expected annual hurricane loss
of USD 1,685 million, accompanied by a standard deviation 2.68 times the mean. North
Carolina’s expected annual hurricane loss amounts to USD 1,533 million, with a standard
deviation of 3.34 times the mean. The combined portfolio of hurricane losses for both states
anticipates an annual loss of USD 3,219 million, exhibiting a standard deviation of 2.05 times
the mean.

Two scenarios are used for comparison: one where the respective portfolios are insured
locally, and another where a reinsurer covers the combined portfolio, thereby diversifying the
associated risks. Figure 3 shows the equity needed for the respective (re)insurer to underwrite
the risk. The reinsurer exhibits the highest capital requirement but concurrently manages
the largest policy volume. When aggregating the capital requirements of local insurers,
the reinsurer consistently demonstrates lower capital requirements for the same portfolio,
where this effect becomes stronger with more tail risk. This phenomenon is due to the global
diversification of reinsurance and underlines a fundamental aspect of reinsurance, namely the
improved efficiency of risk diversification through an increased capital base. This observation
is corroborated by Figure 4. By minimizing the variance of the portfolio, the reinsurer can
charge a lower risk premium, thereby conferring benefits to the end consumer. However, this
advantage dissipates in the event of a hurricane affecting both Texas and North Carolina.

12



Figure 3: Equity for various local and global portfolios.

Figure 4: Risk premium for various local and global portfolios.

3.3 Globally diversifiable and globally undiversifiable

Globally diversifiable risk refers to the type of risk that is primarily covered by the capi-
tal market due to the amount of capital required which cannot be adequately provided by
(re)insurers alone. This transfer of risk to the capital market typically involves the issuance
of a cat bond. Shareholders of the bond pay a principal amount N to a trust account at
time t = 0. In return, at time t = 1, they receive the risk-free rate earned from the trust
account, a coupon payment C, and the principal, and need to pay the incurred losses (and
any additional expenses). Therefore, the terminal cash flow for the shareholder is given by:

Ȳ1 = (1 + rf )N + C,

whereby H̄1 and T̄1 remain the same. To ensure that the initial cash flow for shareholders
remains consistent throughout the model, the initial cash flow is:

Y0 = N = S0 +
C

1 + ω
.
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Here, ω represents a risk-adjusted discount rate, and P = C
1+ω

denotes the present value
premium paid by the policyholder (Braun et al., 2023).

Cat bonds typically feature an attachment point, beyond which they are activated. In
this context, the trigger is set at the 90% quantile of annual hurricane losses, meaning that
only losses exceeding USD 64,503 million are covered. Amounts below this threshold remain
within the insurance market or are borne by policyholders. Consequently, the insurance
market anticipates an expected annual hurricane loss of USD 15,966 million, with a standard
deviation approximately 1.32 times the mean. It is assumed that the cat bond covers losses
up to a maximum of USD 103,373 million, which corresponds approximately to the 95%
quantile.

In the event of a hurricane triggering the cat bond, the loss, amounting to an expected
loss of USD 26,949 million, falls into the capital market. This segment carries an expected
annual hurricane loss with a standard deviation of around 0.53 times the expected value. The
probability of such an event occurring is estimated at 10%. The hurricane data is retrieved
from Grinsted et al. (2019).

The investment market is represented by the S&P 500, with the same assumptions as
in the previous section. Based on historical market shocks from MFS (2023), it is assumed
that a market crash occurs every 10 years with an average decline of 43.11% and a standard
deviation of 0.34 times the expected value. Additionally, recent research found a frictional
rate of 4.5% for cat bonds (Braun et al., 2023).

Three scenarios for the cat bond and the multiple of the bond, i.e., how many times
the initial modeled expected loss investors receive in terms of the coupon, are examined, as
shown in Table 1. If the multiple equals 1, it indicates a coupon without a risk premium. In
Scenario 1, the probability of the jump in loss is positive, the capital market has no jump
risk, and there are no frictions. In this case, the multiple is approximately 1.07, indicating
a market risk premium of 7% of the expected loss. If the capital market also has a risk
of a crash, the market risk premium falls to around 2%. This is consistent with previous
results showing that the more volatile the market, the lower the risk premium. In the last
scenario, frictional costs are added, and the market risk premium rises to 58%. This aligns
with previous research indicating that frictional costs account for a large part of the premium
for extreme risks (e.g., Braun et al., 2023).

According to Artemis (2024), the average multiple for the cat bond market for Q2 2024
is 4, meaning the risk premium is 300% of the expected loss. However, the market risk
premium calculated here is only around 172%. Assuming that the underlying cat bond is
priced consistently with the market, a probability distortion can be assumed. The parameters
of the measure transformation must be calibrated accordingly. Scenarios 4 and 5 show the
results of the marginal solutions, where the distortion occurs only in the probability of the
jump (Scenario 4) or in the jump size (Scenario 5). In theory, the distortion can also occur
in both, but the parameters are linear to each other and add up to the same value and
are therefore unique, as shown in Figure 5. Consequently, the user can decide where the
distortion is larger, e.g., depending on the modeling risk.

Based on the calibrations, a Covid-19 bond is priced, demonstrating that this risk class
cannot be transferred to the capital market without prior adjustments, such as government
support (e.g., Braun et al., 2023). The underlying assumption is a pandemic occurring
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twice in a century, as exemplified by the Spanish flu and Covid-19. The S&P 500 serves
as the underlying market, with the jump size derived from the previous chapter. Business
interruptions, which are part of property insurance contracts (APICA, 2020), are considered
as the damage caused by the pandemic. Therefore, the losses from the previous chapter are
used as the base loss. To ensure comparability with the cat bond, the same jump size is
assumed. This entails adopting a lower limit for the jump process, acknowledging that in the
real world, undiversifiable jumps are significantly higher (e.g., APICA, 2020). Essentially,
the jump probabilities are reduced, but the jump itself is included as a joint process with
correlated jump sizes.

Table 1 shows the multiple for the fictitious Covid-19 bond. Scenario 1 is not available due
to the joint process. In Scenario 2, the multiple more than triples, although the probability of
occurrence is only one-fifth. If frictional costs are included, the multiple doubles. Although
it can be assumed that the modeling risk for pandemics is greater than for natural disasters
due to the limited data and is therefore more of a lower limit, it is now assumed that
the probability distortion is identical in the risk classes. Scenarios 4 and 5 show that the
resulting market risk premium is more than 14 times the expected loss. For comparison,
the largest historical market multiple was 7.5 at the beginning of the cat bonds in 2001
(Artemis, 2024). Accordingly, it can be concluded that given the underlying market, a
transfer of pandemic risks through the capital market is not feasible (e.g., Gründl et al.,
2021). Possible interventions could include reducing frictional costs; if Scenario 4 and 5
are assumed with no frictional costs, the multiple reduces to around 6. Even though a
market risk premium of 500% of the expected damage is very high, it represents a significant
reduction. However, it must be noted that a lower limit for the jump size was used here.
If the jump size increases, the relative multiple may remain stable, but the absolute values
become unaffordable. Additionally, the correlation of the jump sizes was omitted here. Since
only extreme events with a comparably low variance that occur together due to the Poisson
process are considered, correlation has little influence on the multiple. This may differ in
absolute terms, as will be discussed in the next chapter.

In summary, this chapter has demonstrated that the new pricing model accurately reflects
the key relationships between risk and the market. It can calculate market risk premiums
based on the market environment, accommodating both hard and soft market conditions.
Additionally, it can price jump risks, whether independent or joint. With appropriate cali-
bration, the risk appetite of the market can be determined, as discussed in the next section.
Beyond the five scenarios considered, many other combinations are conceivable. For instance,
integrating market risk with jump risks into locally and globally insurable risks could further
enhance the model’s realism.
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Scenario cat bond multiple Covid-19 Bond multiple

1 λ2 = 0.1 1.0689 -

2 λ1 = λ2 = 0.1 or λ = 0.02 1.0201 3.8122

3
λ1 = λ2 = 0.1 or λ = 0.02

1.5783 6.6439
τ = 0.045

4
λ1 = λ2 = 0.1 or λ = 0.02

4 15.1930τ = 0.045
υ2 = υ = −0.7078

5
λ1 = λ2 = 0.1 or λ = 0.02

4 17.2877τ = 0.045
β2 = γ2 = −0.4019

6
λ1 = λ2 = 0.1 or λ = 0.02

2.8752 9.4690
υ2 = υ = −0.7078

7
λ1 = λ2 = 0.1 or λ = 0.02

2.8775 10.8599
β2 = γ2 = −0.4019

Table 1: Multiples for the cat bond and the Covid-19 bond without and with measurement
change.

Figure 5: Linear relationship of υ2 and β2 for a target multiple of 4 for the cat bond.

3.4 Outlook - Risk appetite

The next step extends the analysis to comprehend the risk appetite of specific market entities
for risks in the third category. The calibration again utilizes the hurricane data from Grinsted
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et al. (2019), focusing specifically on the previously excluded 10% severe cases. Additionally,
a recently acquired private dataset from RMS and GallagherRe, representing the global cyber
risk market, will be used.

The aim is to understand the stability of the measure transformation with respect to
individual participants. While the previous chapter demonstrated how a probability dis-
tortion can be calibrated based on the market, this section will examine the sensitivity of
the measurement in the extreme risk market by considering both NatCat and cyber risks.
Two market representatives will be analyzed: (1) SwissRe, which issued a cat bond and a
cyber bond one year apart, and (2) Beazley, which issued two Cyber Bonds with different
characteristics within a short period.

By cross-comparing these four bonds, it is possible to understand how individual market
participants differentiate their risk appetite over time and between individual risks. Since
the processes differ from each other, such as in expected returns, attachment points, etc., the
probability distortion described by the measure transformation serves as a clear measure to
understand this risk appetite. This demonstrates that the model can be used not only for
pricing but also for comparing market participants and risks.

4 Conclusion

This study addresses the evolving landscape of risk management by introducing a compre-
hensive pricing model that accounts for market environment, correlation structures, and
extreme jump risks. The updated risk categories and new model for determining market risk
premiums fill a significant gap in the literature, providing a more accurate framework for
contemporary risk assessment. By integrating these elements into established option pric-
ing models, the study offers a robust method for evaluating and managing emerging risks,
particularly those associated with natural disasters or cyber threats.

The application of this model to real-world data, including hurricane losses and cyber
risks, demonstrates its practical relevance and capability to derive market prices for various
risks. Through calibration to market data, this model enables the definition of a unique
probability distortion through a measure transformation, despite market incompleteness.
This approach allows for a detailed comparison of risk appetites across different market
entities, highlighting the importance of precise market calibration even in the presence of
friction and jump risks.

The results underscore the necessity of incorporating higher-order factors into risk pricing
models to reflect the complexities of modern markets. This work not only enhances the theo-
retical understanding of risk premiums but also provides practical tools for risk management
in both financial and non-financial sectors.
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A Appendix

A.1 Measure changes using the Esscher transformation

Define an asset as:

St = S0 exp(Xt),

whereXtt ≥ 0 is a stochastic process characterized by stationary and independent increments,
and X0 = 0. Furthermore, let:

FXt(x) = P(Xt ≤ x)

be the cumulative distribution function, and:

MP,Xt(u) = E[exp(uXt)]

represent the moment-generating function of the random variable Xt under the measure P.
Thus:

MP,Xt(u) =

∫ ∞

−∞
exp(ux)f(x, t)dx,

where f(x, t) is the continuous density of Xt.
11 Building upon the transformation proposed

by Esscher (1932), a transformed density for Xt is:

f(x, t, h) =
exp(hx)f(x, t)∫∞

−∞ exp(hy)f(y, t)dy

=
exp(hx)f(x, t)

MP,Xt(h)

where h is the transformation parameter. The corresponding moment-generating function is
given by:

MQ,Xt(u) =

∫ ∞

−∞
exp(ux)f(x, t, h)dx

=
MP,Xt(u+ h)

MP,Xt(u)
.

Subsequently, the Esscher transformation is derived for the three significant processes in
this study. The analytical findings align with prior literature, exemplified by works such as
Gerber and Shiu (1994) and Runggaldier (2003), where, for instance, Runggaldier transforms
these measures utilizing the Radon-Nikodym theorem. In the provided examples, the time
component is disregarded, as it is not needed in this context.

11For a discrete distribution, the integral can be replaced by a sum.
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Normal distribution: Assuming Xt = Yt, where Yt is a normally distributed random
variable with a mean of µ and a variance of σ2. The moment-generating function is expressed
as:

MP,Xt(u) = exp(uµ+
1

2
σ2u2).

Through the Esscher transformation, the resulting expression for the moment-generating
function under the new measure Q is:

MQ,Xt(u) = exp
(
u(µ+ hσ2) +

1

2
σ2u2

)
.

Consequently, the new mean under Q can be defined as µ̃ = µ + hσ2. The transformed
normal distribution under Q remains a normal distribution with mean µ̃ variance σ2.

Proof.

MP,Xt(u+ h)

MP,Xt(u)
=

exp
(
(u+ h)µ+ 1

2
σ2(u+ h)2

)
exp(uµ+ 1

2
σ2u2)

= exp
(
(u+ h)µ+

1

2
σ2(u+ h)2 − (uµ+

1

2
σ2u2)

)
= exp

(
(hµ+

1

2
σ2h2 + σ2uh

)
= exp

(
(h(µ+ σ2u) +

1

2
σ2h2

)

Poisson distribution: Assume Xt = kNt, where Nt is a Poisson process with intensity λ,
and k is a constant. The moment-generating function is defined as:

MP,Xt(u) = exp
(
λ(exp(ku)− 1)

)
Through the Esscher transformation, the resulting expression for the moment-generating
function under the new measure Q is:

MQ,Xt(u) = exp
(
λ exp(hk)(exp(ku)− 1)

)
Consequently, the intensity under Q can be defined as λ̃ = λ exp(hk). The transformed
Poisson process under Q remains a Poisson process with intensity λ̃.

Proof.

MP,Xt(u+ h)

MP,Xt(u)
=

exp
(
λ(exp(k(u+ h))− 1)

)
exp

(
λ(exp(ku)− 1)

)
= exp

(
λ(exp(k(u+ h))− 1)− λ(exp(ku)− 1)

)
= exp

(
λ(exp(ku) exp(kh))− λ exp(ku)

)
= exp

(
λ exp(ku)(exp(kh)− 1)

)
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Compounded Poisson process: Assume a compounded Poisson process Xt =
∑Nt

i=1 Yt,
where Nt is a Poisson process with intensity λ, and Yt represents a normally distributed jump
size with mean µ and variance σ2. The moment-generating function is defined as:

MP,Xt(u) = E[exp(u
Nt∑
i=1

Yi)]

= exp
(
λ(MP,Yt(u)− 1)

)
Through the Esscher transformation, the resulting expression for the moment-generating
function under the new measure Q is:

MQ,Xt(u) = exp
(
λ exp(υ)MP,Yt(h)(MQ,Yt(u)− 1)

)
Consequently, the intensity under Q can be defined as λ̃ = λ exp(υ)MP,Yt(h), and the new
mean of the jump size under Q can be defined as µ̃ = µ+hσ2. The transformed compounded
Poisson process under Q remains a compounded Poisson process with intensity λ̃ and mean
jump size µ̃ and variance σ2.

Proof.

MP,Xt(u+ h)

MP,Xt(u)
=

exp
(
λ(MP,Yt(u+ h)− 1)

)
exp

(
λ(MP,Yt(u)− 1)

)
= exp

(
λ(MP,Yt(u+ h)− 1)− λ(MP,Yt(u)− 1)

)

Given the moment-generating function of a normally distributed random variable, one ob-
tains:

MP,Yt(u+ h) = exp
(
(u+ h)µ+

1

2
σ2(u+ h)2

)
= exp

(
uµ+ hµ+

1

2
σ2u2 +

1

2
σ2h2 + σ2uh

)
= exp

(
uµ+

1

2
σ2u2 + h(µ+ σ2u) +

1

2
σ2h2

)
= MP,Yt(u)MQ,Yt(h)

Therefore:

MP,Xt(u+ h)

MP,Xt(u)
= exp

(
λ(MP,Yt(u)MQ,Yt(h)− 1)− λ(MP,Yt(u)− 1)

)
= exp

(
λMP,Yt(u)MQ,Yt(h)− λMP,Yt(u)

)
= exp

(
λMP,Yt(u)(MQ,Yt(h)− 1)

)
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To enable the variation of only the intensity while keeping the jump size constant, a parameter
exp(υ) is introduced. This parameter aligns with the Esscher transformation. and can be
viewed as a generalization. It is used to allow the poission process to be transformed without
changing the jumpsizes, for example, the modeling risk lies in the frequency rather than the
severity of loss.

A.2 Influence of dividends on premiums

Following Cheang and Chiarella (2011), both assets may yield a dividend return denoted as
ξi, i ∈ {1, 2}. In the context of this study, wherein S2 represents the loss, dividend payments
do not apply to this asset, resulting in ξ1 ≥ 0 and ξ2 = 0. Consequently, the formulation
of the option price for the exchange of the two assets, accounting for dividends, can be
formulated as:

C(S1, S2) =
∑
k

∑
m

∑
n

exp
(
− (λ̃1 + λ̃2 + λ̃)

)(λ̃1)
k

k!

(λ̃2)
m

m!

(λ̃)n

n!

×

[
S1 exp

(
− (ξ1 + λ̃1κ̃Z1 + λ̃κ̃1) + kα̃11 +

kδ211
2

+ nα̃1 +
nδ21
2

)
Φ(d1,t,k,m,n)

−S2 exp
(
− (λ̃2κ̃Z2 + λ̃κ̃2) +mα̃22 +

mδ222
2

+ nα̃2 +
nδ22
2

)
Φ(d2,t,k,m,n)

]

where:

d1,t,k,m,n =
ln(S1

S2
) + (−λ̃(κ̃1 − κ̃2)− λ̃1κ̃Z1 + λ̃2κ̃Z2 − ξ1) + µk,m,n +

σ2
k,m,n

2

σk,m,n

√
T − t

.

The other terms remain unchanged.

Given the indemnity losses in the US from the example in Section 3.1. The dividend yield
of the S&P 500 index was at the end of 2022 by 1.78%, whereas historical dividend yields
for the S&P 500 index have typically ranged from between 3% to 5% (Ross, 2023). Figure 6
illustrates the premium differences between dividends and no dividends. The pattern resem-
bles that seen with frictional costs. This suggests that dividends in alternative investments
are a price determinant for insurance contract premiums.
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Figure 6: Premium for different dividends.

A.3 Proofs

Lemma 1

Proof. In the benchmark model, the proof is straightforward. In the extension, given the
absence of insolvency risk, E[D] = 0. Moreover, without friction and jump risk, c = 0.
Hence, P = E[L̄]. In the option model, when jump risk is absent, the following relationships
hold:

Y0Φ(d1)− E[L̄]Φ(d2) =S0

⇔ (S0 + P )Φ(d1)− E[L̄]Φ(d2) =S0

⇔ S0(Φ(d1)− 1) + PΦ(d1)− E[L̄]Φ(d2) =0

It is observed that:

lim
S0→∞

d1 = lim
σ→0

d1 = ∞ and lim
S0→∞

d2 = lim
σ→0

d2 = ∞,

leading to:

lim
S0→∞

Φ(d1) = lim
σ→0

Φ(d1) = 1 and lim
S0→∞

Φ(d2) = lim
σ→0

Φ(d2) = 1.

Consequently, the equation simplifies to:

S0(Φ(d1)− 1) + PΦ(d1)− E[L̄]Φ(d2) =0

⇔ P − E[L̄] =0

⇔ P =E[L̄]
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Lemma 2

Proof. In the scenario where σ → 0, uncertainty diminishes, eliminating jump risks. Conse-
quently, the focus lies solely on the case where S0 → ∞. Without loss of generality, k, m
and n can be fixed:

exp
(
− (λ̃1 + λ̃2 + λ̃)

)(λ̃1)
k

k!

(λ̃2)
m

m!

(λ̃)n

n!
=

exp
(
− λ̃1

)(λ̃1)
k

k!
exp

(
− λ̃2

)(λ̃2)
m

m!
exp

(
− λ̃
)(λ̃)n

n!
=

Pλ̃1
(k)Pλ̃2

(m)Pλ̃(n),

given the Poisson distribution of the jump occurrences. From the previous proof it is known
that for S0 → ∞:

Φ(d1, t, k,m, n) = Φ(d2, t, k,m, n) = 1.

Thus, the option formula can be expressed as:

C(Y1(P ), L̄) =
∑
k

∑
m

∑
n

Pλ̃1
(k)Pλ̃2

(m)Pλ̃(n)

×

[
Y0 exp

(
− (λ̃1κ̃Z1 + λ̃κ̃1) + kα̃11 +

kδ211
2

+ nα̃1 +
nδ21
2

)
− E[L̄] exp

(
− (λ̃2κ̃Z2 + λ̃κ̃2) +mα̃22 +

mδ222
2

+ nα̃2 +
nδ22
2

)]

Moreover:

exp(kα̃11 +
kδ211
2

) = E[exp(kZ1]

exp(mα̃22 +
mδ222
2

) = E[exp(mZ2)]

exp(nα̃1 +
nδ21
2

) = E[exp(nY1)]

exp(nα̃2 +
nδ22
2

) = E[exp(nY2)],
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and defining
∑

k,m,n Pλ̃1,λ̃2,λ̃
(k,m, n) =

∑
k

∑
m

∑
n Pλ̃1

(k)Pλ̃2
(m)Pλ̃(n):

C(Y1(P ), L̄) =
∑
k,m,n

Pλ̃1,λ̃2,λ̃
(k,m, n)

[
Y0 exp

(
− (λ̃1κ̃Z1 + λ̃κ̃1)

)
E[exp(kZ1)]E[exp(nY1)]

− E[L̄] exp
(
− (λ̃2κ̃Z2 + λ̃κ̃2)

)
E[exp(mZ2)]E[exp(nY2)]

]

=

[
Y0 exp

(
− (λ̃1κ̃Z1 + λ̃κ̃1)

) ∑
k,m,n

Pλ̃1,λ̃2,λ̃
(k,m, n)E[exp(kZ1)]E[exp(nY1)]

− E[L̄] exp
(
− (λ̃2κ̃Z2 + λ̃κ̃2)

) ∑
k,m,n

Pλ̃1,λ̃2,λ̃
(k,m, n)E[exp(mZ2)]E[exp(nY2)]

]
The call option must equate to the initial equity, therefore:

C(Y1(P ), L̄) =(S0 + P ) exp
(
− (λ̃1κ̃Z1 + λ̃κ̃1)

) ∑
k,m,n

Pλ̃1,λ̃2,λ̃
(k,m, n)E[exp(kZ1)]E[exp(nY1)]

− E[L̄] exp
(
− (λ̃2κ̃Z2 + λ̃κ̃2)

) ∑
k,m,n

Pλ̃1,λ̃2,λ̃
(k,m, n)E[exp(mZ2)]E[exp(nY2)]

=S0.

For the sake of a simpler overview, let’s define:

J1 =
∑
k,m,n

Pλ̃1,λ̃2,λ̃
(k,m, n)E[exp(kZ1)]E[exp(nY1)]

and:
J2 =

∑
k,m,n

Pλ̃1,λ̃2,λ̃
(k,m, n)E[exp(mZ2)]E[exp(nY2)]

as a placeholder. Isolating the premium yields to:

P =E[L̄]
exp

(
− (λ̃2κ̃Z2 + λ̃κ̃2)

)
J2

exp
(
− (λ̃1κ̃Z1 + λ̃κ̃1)

)
J1

+ S0

1− exp
(
− (λ̃1κ̃Z1 + λ̃κ̃1)

)
J1

exp
(
− (λ̃1κ̃Z1 + λ̃κ̃1)

)
J1

=E[L̄] exp
(
− (λ̃2κ̃Z2 − λ̃1κ̃Z1 + λ̃(κ̃2 − κ̃1))

)J2
J1

+ S0

1− exp
(
− (λ̃1κ̃Z1 + λ̃κ̃1)

)
J1

exp
(
− (λ̃1κ̃Z1 + λ̃κ̃1)

)
J1

Upon closer examination of J1, its expression can be rephrased. Without loss of generality,
the same restructuring applies to J2 by substituting k and m:

J1 =
∑
k,m,n

Pλ̃1,λ̃2,λ̃
(k,m, n)E[exp(kZ1)]E[exp(nY1)]

=
∑
m

Pλ̃2
(m)︸ ︷︷ ︸

=1

∑
k

Pλ̃1
(k)E[exp(kZ1)]

∑
n

Pλ̃(n)E[exp(nY1)].
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Without loss of generality, the focus remains on
∑

k Pλ̃1
(k)E[exp(kZ1)] with this equivalence

extending to other components sharing a similar structure:∑
k

Pλ̃1
(k)E[exp(kZ1)] =

∑
k

Pλ̃1
(k) exp(kα̃11 + k

δ222
2
)

=
∑
k

Pλ̃1
(k) exp(α̃11 +

δ222
2
)k

=
∑
k

Pλ̃1
(k)E[exp(Z1)]

k

=
∑
k

Pλ̃1
(k) exp

(
k ln(E[exp(Z1)])

)
Reflecting on the fact that the moment-generating function of a Poisson-distributed random
variable x is defined as MX(u) = E[exp(uX)] =

∑
n P(X = n) exp(un), this results in:∑

k

Pλ̃1
(k) exp

(
k ln(E[exp(Z1)])

)
= MN1

(
ln(MZ1)

)
= exp(λ̃1(exp

(
ln(E[exp(Z1)])

)
− 1))

= exp(λ̃1

(
E[exp(Z1)]− 1)︸ ︷︷ ︸

κ̃Z1

)

= exp(λ̃1κ̃Z1).

Summarized, it holds:

J1 = exp(λ̃1κ̃Z1) exp(λ̃κ̃1)

J2 = exp(λ̃2κ̃Z2) exp(λ̃κ̃2)

Therefore, the following applies to the premium:

P =E[L̄] exp
(
− (λ̃2κ̃Z2 − λ̃1κ̃Z1 + λ̃(κ̃2 − κ̃1))

)exp(λ̃2κ̃Z2) exp(λ̃κ̃2)

exp(λ̃1κ̃Z1) exp(λ̃κ̃1)

+ S0

1− exp
(
− (λ̃1κ̃Z1 + λ̃κ̃1)

)
exp(λ̃1κ̃Z1) exp(λ̃κ̃1)

exp
(
− (λ̃1κ̃Z1 + λ̃κ̃1)

)
exp(λ̃1κ̃Z1) exp(λ̃κ̃1)

=E[L̄] exp
(
− (λ̃2κ̃Z2 − λ̃1κ̃Z1 + λ̃(κ̃2 − κ̃1))

)
exp

(
(λ̃2κ̃Z2 − λ̃1κ̃Z1 + λ̃(κ̃2 − κ̃1))

)
+ S0

1− exp
(
− (λ̃1κ̃Z1 + λ̃κ̃1)

)
exp(λ̃1κ̃Z1 + λ̃κ̃1)

exp
(
− (λ̃1κ̃Z1 + λ̃κ̃1)

)
exp(λ̃1κ̃Z1 + λ̃κ̃1)

= E[L̄]
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