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Abstract 

This article performs a comparative analysis of traditional and selective hedging strategies in 
commodity futures markets. Traditional hedging is aimed solely at reducing the risk of the 
commodity spot positions, whereas selective hedging additionally pursues economic gains by 
engaging in speculation based on the hedger’s prediction of the commodity futures return. We 
construct selective hedges using diverse forecasting approaches that range from the naïve historical 
average to more sophisticated techniques such as machine learning. The hedging strategies are 
assessed through the lens of hedging effectiveness based on the expected mean-variance utility of 
the hedged returns. Out-of-sample results for 24 commodities endorse traditional over selective 
hedging, as the latter increases risk but fails to generate additional returns. The findings survive 
various reformulations of the hedges, longer estimation windows, and alternative rebalancing 
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1. Introduction 

Although irrelevant in Modigliani-Miller frictionless capital markets, risk management is known 

to increase shareholder value in the presence of market imperfections because it can lower the cost 

of financial distress (Smith and Stulz, 1985; Stulz, 1996), increase the debt tax shield (Leland, 

1998), or reduce expected tax payments and agency costs (Smith and Stulz, 1985). Risk 

management is commonly implemented in practice (Rawls and Smithson, 1990; Géczy et al., 1997) 

as it is perceived to reduce cash flow variation, facilitate investment in growth opportunities, or 

increase sales and managerial ownership, inter alia. This article performs a comparative analysis 

of traditional and selective hedging strategies in commodity futures markets. The objective is to 

test empirically whether commodity firms are likely to achieve greater utility from traditional 

minimum-variance hedging that solely aims at covering spot price risk or from selective hedging 

with an additional speculative element that is constructed upon their market views. 

Selective hedging is endorsed theoretically as the equilibrium solution of rational expectations 

models of hedging (Anderson and Danthine, 1981, 1983; Stulz, 1984). It appears consistent with 

the risk management practices of commodity producers. For example, Adam and Fernando (2006) 

and Brown et al. (2006) argue that the hedge ratios of gold mining companies are too volatile to be 

explained by a pure hedging rationale. They must therefore contain a speculative component that 

hinges on predictions about the direction of the market. Likewise, Cheng and Xiong (2014) observe 

that the short futures positions of corn, cotton, soybeans and wheat producers move in sync with 

their futures prices, suggesting again some speculative trading based on current market conditions. 

Surveying the risk management practices of 6,896 firms across 47 countries, Bartram (2019) 

observes that corporations engage in speculation within their commodity derivatives trading 
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programs, which aligns with the notion that forecasting commodity price movements constitutes a 

competitive advantage to commodity firms’ risk management.  

Against this background, there is a dearth of empirical research on the relative merits of selective 

versus traditional hedging in practice. This article aims to fill in this gap. To do so, we compare the 

traditional minimum-variance hedging strategy that solely targets risk minimization and hence, 

assumes no futures price movement over the hedging horizon, and a wide spectrum of selective 

hedges that rely on diverse techniques to predict the futures return. We start by deploying a naïve 

selective hedge where the futures return prediction is the historical average return. Next, we 

consider selective hedges that employ futures return forecasts derived from either an autoregressive 

model (Cotter and Hanly, 2010, 2012), a vector autoregressive model (Furió and Torró, 2020), a 

combination of univariate regression forecasts (Rapach et al., 2010) or style integration (inspired 

by Brandt et al., 2009; Barroso et al., 2022). Lastly, we design selective hedges that use state-of-

the-art machine learning methods to accommodate any form of nonlinearity between the target 

commodity futures return and the predictors (Fischer and Krauss, 2018; Gu et al., 2020; Chen et 

al., 2023). To the best of our knowledge, the selective hedges based on historical average returns, 

the combination of univariate regression forecasts, and machine learning forecasts are new to the 

literature on risk management. By entertaining a wide range of predictive methods for the 

commodity futures return, our objective is to provide the selective hedging framework with ample 

opportunities to succeed.  

We implement the hedges on 24 commodities spanning various sectors (agriculture, energy, 

livestock, and metals). The effectiveness of the various hedges is gauged in terms of the out-of-

sample mean-variance utility gain of hedging versus no-hedging. Commodity by commodity, each 
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selective hedge is confronted with a traditional hedge and the statistical significance of differences 

in their expected utility gains is assessed via the McCracken and Valente (2018) test.  

The analysis suggests that traditional hedging is not statistically surpassed by selective hedging in 

terms of the expected utility gain afforded to the commodity hedger. Thus, commodity hedgers are 

for the most part better off by assuming no change in the futures price over the hedging horizon. 

The inability of selective hedging to consistently and significantly outperform traditional hedging 

in practice reflects the low out-of-sample time-series predictability of individual commodity 

futures returns. Thus, the speculative component worsens the risk coverage aspect without 

generating any extra return. This outcome is exacerbated by transaction costs. Various robustness 

tests confirm that the effectiveness of traditional hedging is not challenged when we re-design the 

traditional and selective hedge ratios, incorporate time-varying risk aversion, evaluate the utility 

gains over sub-samples, consider longer estimation windows to obtain the forecasts, deploy long 

and short hedging, allow for different rebalancing frequencies, use longer-dated futures contracts 

as hedging instruments or study the hedging problem of a diversified commodity producer.  

The main takeaway from our analysis is that, although selective hedging stems as the optimal 

solution of theoretical models of hedging, it is challenging for commodity firms to benefit (i.e., 

obtain a higher utility) from this practice relative to the traditional hedging method. The strong 

recommendation that arises from this study is that risk managers are generally better off hedging 

spot price risk without incorporating their market views into their hedging program.  

The present paper speaks to the selective hedging literature that builds upon the theoretical models 

of Anderson and Danthine (1981, 1983) and Stulz (1984) with empirical implementations in Cotter 
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and Hanly (2010, 2012), Furió and Torró (2020) and Barroso et al. (2022).1 Our main finding on 

the difficulty of outperforming traditional hedging aligns also with a selective hedging literature 

that documents the very small increase in firm value accrued from selective hedging (Adam and 

Fernando, 2006; Brown et al., 2006) and warns against the perils of poorly structured selective 

hedging programs (Chalmin, 1987; Pirrong, 1997; Carter et al., 2021; Westgaard et al., 2022).2  

Our article also contributes to the literature on the time-series predictability of individual 

commodity returns. Bessembinder and Chan (1992) provide evidence that several predictors of 

stock and bond returns have in-sample predictive content for commodity futures returns, while 

Bjornson and Carter (1997) extend their evidence to other predictors and agricultural commodity 

returns. Both papers argue that the observed predictability is consistent with conditional pricing 

models. The evidence on out-of-sample commodity return predictability is far less conclusive. 

Hollstein et al. (2021) argue that business cycle and commodity characteristics can predict 

individual commodity returns. Ahmed and Tsvetanov (2016) and Guidolin and Pedio (2021) 

contend instead that individual commodity return predictability is at best very low and Wang and 

Zhang (2024) find very mixed evidence from machine learning methods.  Adopting a zero-return 

 

1 The empirical studies on selective hedging in commodity markets focus solely on the energy 
sector, and their goal is to examine the impact on the selective hedging outcome of the assumed 
risk aversion level, the choice of utility function or seasonality (Cotter and Hanly, 2010, 2012; 
Furió and Torró, 2020). More recently, Barroso et al. (2022) study the hedging problem of a global 
equity investor exposed to exchange rate risk and propose a selective hedging solution that predicts 
the currency expected return by optimally integrating currency characteristics. 

2 For example, Chalmin (1987) links Cook Industries’ 1978 bankruptcy to selective hedging and 
Pirrong (1997) attributes the $1.3 billion losses of Metallgesellschaft in 1993 to speculation in 
crude oil futures. Carter et al. (2021) examines Queensland Sugar Limited’s losses, concluding that 
selective hedging was the culprit. Westgaard et al. (2022) examine 14 commodity trading disasters 
which include those by China Aviation Oil (Singapore) or the State Reserves Bureau (China) where 
selective hedging led to dramatic losses. In 2022, Tsingshan Holding Group lost $8 billion on 
suspicion of selective hedging in the nickel futures markets (The Economist, 2022).  
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(no-predictability) expectation as benchmark, which is the appropriate benchmark in the present 

study as it is the assumption implicit in traditional hedging, we confirm that there is weak out-of-

sample predictability in individual commodity futures returns.  

The rest of the article unfolds as follows. Sections 2 and 3 introduce the methodology and data, 

respectively. Section 4 discusses the expected utility gains of the various hedges and explains the 

failure of selective hedging. Section 5 presents robustness checks and Section 6 concludes.  

2. Hedging Framework 

2.1. Optimal hedging under mean-variance utility 

We consider the canonical problem of a single commodity producer that builds a hedge at time 

t and rebalances it at t+1. As in prior studies, we abstract from uncertainty in the producer’s 

output.  Following the theoretical framework of hedging laid out by Anderson and Danthine 

(1981), we assume a mean-variance utility function for the commodity firm formalized as 

𝑈ሺ∆𝑝௧ାଵሻ ൌ 𝐸ሺ∆𝑝௧ାଵሻ െ
ଵ

ଶ
 𝛾 𝑉𝑎𝑟ሺ∆𝑝௧ାଵሻ,                                     (1) 

where ∆𝑝௧ାଵ ൌ ∆𝑠௧ାଵ െ ℎ௧∆𝑓௧ାଵ is the time t to t+1 logarithmic return of the hedge portfolio, 

∆𝑠௧ାଵ is the spot return, ∆𝑓௧ାଵ is the futures return, ℎ௧ is the optimal hedge ratio that defines 

the number of short futures positions per unit of output or spot position, and the parameter 𝛾 

is the coefficient of risk aversion of our representative hedger.  

The maximization of the hedger’s expected utility conditional on the information set available 

at time t, denoted Ω௧, gives the optimal selective hedge ratio as  

ℎ௧ ൌ
ఙೞ,

ఙ,
మ െ

ா൫∆𝑓௧ାଵหΩ௧൯
ఊఙ,

మ ൌ  𝛽௧ െ
ா൫∆𝑓௧ାଵหΩ௧൯

ఊఙ,
మ ,                            (2) 

where 𝜎௦,௧  is the covariance between spot and futures returns, 𝜎,௧
ଶ  is the futures return 
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variance, and 𝐸௧ሺ∆𝑓௧ାଵ|Ω௧ሻ is the expected futures return from t to t+1 conditional on Ω௧.  

The selective hedge is made up of a minimum-variance component, 𝛽௧ , and a speculative 

component, 
ா൫∆𝑓௧ାଵหΩ௧൯

ఊఙ,
మ . Thus, a commodity producing firm who predicts a rise in the futures 

price over the hedging horizon (𝐸௧ሺ∆𝑓௧ାଵ|Ω௧ሻ  0) shall take less short futures positions than 

under pure hedging, ℎ௧ ൏ 𝛽௧. If the firm anticipates a fall in the futures price (𝐸௧ሺ∆𝑓௧ାଵ|Ω௧ሻ ൏

0), the number of short futures contracts will be higher than under pure hedging, ℎ௧  𝛽௧. The 

utility-maximizing hedge ratio collapses to the minimum-variance hedge ratio, ℎ௧ ൌ 𝛽௧, if the 

hedger is infinitely risk averse, 𝛾 ൌ ∞, or the futures price is assumed to follow a pure random 

walk, 𝐸௧ሺ∆𝑓௧ାଵ|Ω௧ሻ ൌ 0. Using a window of past L-observations at each hedge formation time 

t, we operationalize 𝛽௧ as the OLS slope coefficient of a regression of spot returns on futures 

returns (Ederington, 1979) which we refer to as MinVar hedge. Other estimation approaches 

for the traditional hedge ratio are considered in the robustness section. 

2.2. Competing selective hedging strategies 

Selective hedging requires a forecast of the futures return as formalized in Equation (2). A simple 

forecast is the historical average (HistAve) of the futures return, 𝐸௧ሺ∆𝑓௧ାଵ|Ω௧ሻ ൌ
ଵ


∑ ∆𝑓௧ି
ିଵ
ୀ , 

which arises from the assumption that the futures price follows a random walk with drift. To the 

best of our knowledge, this selective hedge has not been considered in prior studies. As Cotter and 

Hanly (2010, 2012), we deploy the autoregressive (AR) selective hedge based on the forecast 

𝐸௧ሺ∆𝑓௧ାଵ|୲ሻ ൌ 𝛼ො,௧  𝛼ොଵ,௧∆𝑓௧ where 𝛼ො,௧ and 𝛼ොଵ,௧ are estimated at time t using the futures return 

history ሼ∆𝑓௧ିሽୀ
ିଵ.  As in Furió and Torró (2020), we extend the latter to the vector autoregressive 

(VAR) selective hedge which hinges on a futures return forecast derived from a bivariate VAR(p) 
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model fitted to past futures returns and roll-yield data.3 These three selective hedges exploit a very 

limited information set Ω௧. 

Next, we implement selective hedges that rely on an information set Ω௧ with 𝐾 ൌ 37 predictors. A 

novel selective hedge is based on the equal-weight combination (EWC) of univariate regression 

forecasts advocated, for instance, by Rapach et al. (2010) and Hollstein et al. (2021) for equities 

and commodities, respectively. Specifically, the futures return forecast is constructed as 

𝐸௧ሺ∆𝑓௧ାଵ|୲ሻ ൌ 𝝎௧
ᇱ∆𝒇௧ାଵwhere 𝝎௧

ᇱ ൌ ቀ
ଵ


, … ,

ଵ


ቁ with ∆𝑓መ,௧ାଵ ൌ 𝛼ො,௧  𝛼ොଵ,௧𝑧,௧ , denoting each of 

the forecasts conditioned upon each of the predictors in the available set 𝒛௧ ൌ ൫𝑧ଵ,௧ , 𝑧ଶ,௧ , … , 𝑧,௧ ൯′.  

Inspired by the optimal currency overlay strategy of Barroso et al. (2022), we also deploy a 

selective hedge that builds on the cross-sectional style-integration literature initiated by Brandt et 

al. (2009) where multiple asset characteristics proxy for expected returns. Instead, our hedger is 

assumed to integrate time series predictors solving the problem, 

max
𝝎

𝐸௧ൣ𝑈൫∆𝑝௧ାଵ
ିூ௧ሺ𝝎௧ሻ൯ห௧൧ ൌ max

𝝎
𝐸௧ሾ𝑈ሺ∆𝑠௧ାଵ െ ሺ𝛽௧ െ 𝝎௧′𝒛௧ሻ∆𝑓௧ାଵሻ|௧ሿ,          (3) 

with ∆𝑠௧ାଵ , ∆𝑓௧ାଵ , and ∆𝑝௧ାଵ
ିூ௧  denoting the spot, futures and K-Integr hedge returns for a 

given commodity i at time t+1, 𝛽௧ is the MinVar hedge ratio of commodity i at time t, 𝝎௧ is a 

𝐾 ൈ 1  vector of loadings estimated at time t, and 𝒛௧ ൌ ൫𝑧ଵ,௧ , 𝑧ଶ,௧ , … , 𝑧,௧ ൯′ is a 𝐾 ൈ 1  vector of 

standardized predictors with zero mean and unit deviation at time t. To ensure that the K-Integr 

portfolio does not depart too much from the benchmark MinVar portfolio, we restrict the 

optimization with the tracking error constraint 𝜎൫∆𝑝௧ାଵ
ெ െ ∆𝑝௧ାଵ

ିூ௧ሺ𝝎௧ሻ൯  𝜍  where 𝜎ሺ∙ሻ  

 

3  The rationale for extending the AR model to a bivariate VAR model is that by reflecting 
commodity inventory levels, the roll-yield can predict futures returns.  
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denotes the standard deviation, ∆𝑝௧ାଵ
ெ is the traditional MinVar hedge return and 𝜍 is a tracking 

error threshold. As with all other hedges, a window of past L-observations is used to construct the 

K-Integr hedge at each time t. The K-Integr selective hedge has not been studied yet in the context 

of commodity hedging.  

Lastly, by allowing for complex nonlinear relationships between candidate predictors and target 

futures returns, machine learning (ML) methods can be a fruitful approach to construct selective 

hedges. The ML forecast of the futures return is constructed as 𝐸௧ሺ∆𝒇௧ାଵ|Ω௧ሻ ൌ 𝑔∗ሺ𝒛𝒕ሻ where 

∆𝒇௧ାଵ is a 1 ൈ 𝑁   vector of futures returns at time t+1 pooled across commodities, 𝒛௧  is the 

𝐾 ൈ 𝑁 vector of standardized predictors at time t,  and 𝑔∗ሺ∙ሻ is the nonlinear function implicit in 

the ML method at hand.  Following the literature on machine learning (Fischer and Krauss, 2018; 

Gu et al., 2020; Chen et al., 2023; Rad et al., 2023), the nonlinear function 𝑔∗ሺ∙ሻ is operationalized 

through a supervised ML algorithm such as random forests (RF), in the main analysis, and deep 

neural networks (DNN), deployed as such or in conjunction with long-short term memory (LSTM) 

units, in the robustness section. To our best knowledge, the machine learning selective hedges are 

new to the literature. Table 1 lists the selective hedges in the main empirical section of the paper. 

[Insert Table 1 around here] 

2.3. Hedging effectiveness 

We compare the hedging strategies according to their hedging effectiveness defined as the expected 

utility of the hedge portfolio versus the expected utility of the unhedged spot position (utility gain), 

Δ𝐸൫𝑈ுௗ൯ ൌ 𝐸൫𝑈ுௗ൯ െ 𝐸൫𝑈ௌ௧൯,           (4) 

where 𝑈ሺ∙ሻ is the mean-variance utility function in Equation (1). Unlike other portfolio 

performance metrics such as the Sharpe ratio, the expected utility gain is a consistent measure of 
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hedging effectiveness because it allows us to embed the same level of risk aversion 𝛾 in the hedge 

ratio construction, Equation (2), as in the hedge performance evaluation, Equation (4). In the main 

analysis, we employ the constant coefficient of relative risk aversion 𝛾 ൌ 5, while time-varying 

values are considered in the robustness tests.  

In order to provide statistical significance to the differential in hedging effectiveness (selective 

versus MinVar strategy), we deploy the McCracken and Valente (2018) test with null hypothesis 

𝐻:Δ𝐸൫𝑈൯ ൌ Δ𝐸ሺ𝑈ௌுሻ െ Δ𝐸ሺ𝑈ெሻ  0  and alternative hypothesis  𝐻ଵ:Δ𝐸൫𝑈൯  0 

where Δ𝐸ሺ𝑈ሻ is the expected utility gain as defined in Equation (4) and the subscript 𝑆𝐻 denotes 

the selective hedging strategy at hand. The inference is based on the stationary bootstrap of Politis 

and Romano (1994). Using a moving block bootstrap approach as in Patton et al. (2009), we 

generate 𝐵 ൌ 500 artificial samples of spot returns, futures returns and predictors, ሼ∆𝑠௧,ሽ௧ୀଵ
் , 

ሼ∆𝑓௧,ሽ௧ୀଵ
் , ሼ𝒛௧,ሽ௧ୀଵ

் , where 𝑏 ൌ 1, … ,𝐵  denotes each replication. The demeaned empirical 

distribution ൛∆𝑈,
∗ ൟ

ୀଵ


 facilitates the bootstrap p-value for the test statistic. 

3. Data  

The empirical analysis is based on weekly (Monday) spot prices and futures settlement prices for 

24 commodities spanning the agriculture, energy, livestock, and metal sectors, from Barchart 

(previously Commodity Research Bureau, CRB) and Refinitiv Datastream, respectively. The spot 

returns are measured as weekly changes in logarithmic (log) spot prices. Assuming full 

collateralization of futures positions, the futures returns are measured as weekly log futures price 

changes plus the risk-free rate, 𝛥𝑓௧ାଵ   ൌ ൫𝑓௧ାଵ,் െ 𝑓௧,்൯  𝑟ி,௧ାଵ  with 𝑓௧,் denoting the week t log 

price of the futures contract with maturity T and 𝑟ி,௧ାଵ the 1-month U.S. Treasury bill rate as proxy 

for the risk free rate. We create continuous futures return series using the prices of front-end 
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contracts except in maturity months when we roll to the second-nearest contracts following the 

standard approach in the empirical commodity futures literature (e.g., Szymanowska et al., 2014; 

Boons and Prado, 2019). The summary statistics for commodity returns in Table 2 confirm various 

stylized facts: negligible expected returns, and large cross-sectional heterogeneity in spot price risk 

and basis risk as conveyed by the return variance and spot-futures correlation, respectively. 

[Insert Table 2 around here] 

In addition, we consider 𝐾 ൌ 37 variables as predictors of individual commodity futures returns in 

the EWC, K-Integr and machine learning selective hedges. All the variables are sampled at the 

weekly frequency and can be classified in two groups. The first group comprises the 10 commodity 

futures characteristics argued previously to price commodity futures either in the time series or in 

the cross section. The second group includes 27 financial, macroeconomic and sentiment indicators 

that can proxy the general state of the economy and thus capture financing costs and short-term 

mismatches between the demand and supply of commodities. Appendix A provides a detailed 

description of each of the 37 predictors, presents the data sources, as well as the main references. 

4. Main Empirical Results 

4.1. Commodity hedge ratios 

The hedging strategies are deployed sequentially out-of-sample (OOS) to mimic the hedging 

decisions of a representative single-commodity producer in real time. Specifically, at each sample 

week t, the covariance, 𝜎௦,௧, variance, 𝜎,௧
ଶ , and futures return forecast, 𝐸௧ሺ∆𝑓௧ାଵ|Ω௧ሻ, are obtained 

from a 𝐿-length window of past data to construct the hedge ratio, Equation (2). The hedge portfolio 

is then held from week t to week t+1. The estimation window is then rolled forward by one week 

to construct a new hedge portfolio at week t+1 and so forth.  
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In the main analysis, we assume a weekly rebalancing frequency, rolling estimation windows of L 

= 520 weeks, and a coefficient of relative risk aversion 𝛾 = 5. For the VAR(p) selective hedge, the 

appropriate lag order p (setting the maximum at 12) is identified each week using a rolling window 

of L observations and the Akaike Information Criteria (AIC) as in Furió and Torró (2020). For the 

K-Integr selective hedge, we adopt the tracking error threshold 𝜍 ൌ 2% p.a. as in Barroso et al. 

(2022). The RF forecasts are obtained as follows (see Gu et al., 2020). First, we split the sample 

into training (the initial 60% of the L-length estimation window) and validation (the most recent 

40% of the estimation window). We pool the information on the K predictors and target futures 

returns across commodities for each (training and validation) sample. Second, we optimize the RF 

over the training sample upon various hyperparameter values4 and compute the mean squared error 

(MSE) over the validation sample as measure of fit of the trained RF. Third, the values of the 

hyperparameters that deliver the lowest MSE over the validation sample are used to optimize the 

RF over the entire (training and validation) estimation sample, and ultimately, to forecast the 

futures return using the optimized vector of predictors. The RF is optimized once a year, that is, 

the first optimization is carried out on the last week of September 2013 using the first 𝐿 ൌ 520-

week estimation window, the next optimization on the last week of September 2014 and so on.  

Figure 1 illustrates the evolution of the resulting traditional and selective hedge ratios for cocoa. 

Figure 2 presents the standard deviations of the hedge ratios on average across commodities. The 

MinVar hedge ratio is rather stable as suggested by a standard deviation of 4% on average across 

commodities in Figure 2. The selective hedge ratios are far more volatile and prone to abrupt 

 

4 The number of iterations or trees, S, is set to 300. The hyperparameter values considered are the 
number of randomly chosen predictors in each simulation, 𝑅 ൌ  ሼ3, 5, 10, 20, 30ሽ,  and the 
maximum number of branches or depth of the tree, D ൌ ሼ1, 2, 3, 4, 5, 6ሽ. 
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changes (c.f., Figure 1), especially those that hinge on RF forecasts (standard deviation of 56% on 

average in Figure 2), VAR forecasts (54%) and AR forecasts (32%) with the HistAve and K-Integr 

forecasts providing the least volatile selective hedge ratios (16% and 12%, respectively). The latter 

is not surprising given the stringent tracking error constraint of the K-Integr hedge relative to the 

MinVar hedge. More volatile hedge ratios will be naturally penalized by higher rebalancing costs.  

[Insert Figures 1 and 2 around here] 

4.2. Hedging effectiveness  

Table 3 presents the hedging effectiveness or the expected utility gain of the various hedges for 

each of the 24 commodities obtained from Equation (4). As Table 3, Panel E, shows, the expected 

utility gain of the MinVar and K-Integr hedges are the largest at 16.27% p.a. and 16.61% p.a., 

respectively, on average across commodities. The K-Integr hedge, which bestows the higher utility 

gains to 19 commodities (out of 24) than the MinVar hedge, is the closest competitor to MinVar. 

The HistAve, EWC, AR, VAR and RF hedges are less effective with expected utility gains of 

15.73%, 15.72%, and 13.31%, 9.22% and 7.28% p.a., respectively, on average. 

[Insert Table 3 around here]  

Table 3 also reports the p-values of the McCracken and Valente (2018) test for the difference in 

expected utility gains between selective and traditional hedging. The p-values are generally large 

which indicates that the expected utility gain of selective hedging is not superior to that of MinVar. 

Thus, there is a lack of evidence to abandon traditional hedging in favor of selective hedging: none 

of the selective hedges delivers strong and consistent outperformance relative to the benchmark at 

the 5% level. Given besides its simplicity, it seems reasonable to recommend traditional hedging. 
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We bring transaction costs into the analysis by computing the net returns of the hedge portfolios as 

∆𝑝௧ାଵ ൌ ∆𝑠௧ାଵ െ ℎ௧∆𝑓௧ାଵ െ  หℎ௧ െ ℎ௧ିଵ𝑒∆ห ൈ 𝑇𝐶 using the 8.6 basis point transaction cost (TC) 

estimate of Marshall et al. (2012). We then calculate the net expected utility gain of each strategy 

using Equation (4). Table 3, Panel E, presents the results across commodities. Transaction costs 

have a minimal impact on the expected utility gain of the MinVar hedge (utility gain reduction of 

0.05% p.a.) and decrease the expected utility gains of the HistAve, EWC, K-Integr, RF, AR, and 

VAR hedges by 0.08%, 0.19%, 0.32%, 0.51%, 1.05% and 1.61% p.a., respectively. Hence, the 

consideration of transaction costs reinforces our earlier finding. 

4.3. Understanding the effectiveness of traditional hedging 

Next, we seek to explain why selective hedging does not significantly increase expected utility of 

hedging. First, we adopt the 𝑅ைைௌ
ଶ  measure of Campbell and Thompsom (2008) to gauge statistical 

forecasts accuracy (under a mean squared error loss function)  

𝑅ைைௌ
ଶ ൌ 1 െ

∑ ൫∆శభି∆శభ
ೄಹ൯

మ


∑ ൫∆శభି∆శభ
ಾೇೌೝ൯

మ


ൌ 1 െ
∑ ൫∆శభି∆శభ

ೄಹ൯
మ



∑ ∆శభ
మ


,         (5) 

where ∆𝑓௧ାଵ
ெ ൌ 0 is in the present context the no-predictability (zero expected commodity 

futures return) assumption that underlies the traditional hedging strategy, and  ∆𝑓௧ାଵ
ௌு  is the forecast 

used to determine the speculative component in Equation (2) and form the selective hedge.5 𝑅ைைௌ
ଶ 

0 reveals that the forecasts are no more accurate than the benchmark, and 𝑅ைைௌ
ଶ  0 that they are 

more accurate. We provide statistical significance to the findings with the Diebold and Mariano 

(1995) test for the null hypothesis 𝐻:𝐸ሺ𝑑௧ሻ  0 versus the alternative 𝐻ଵ:𝐸ሺ𝑑௧ሻ  0 where 𝑑௧ ൌ

 

5 The futures return forecast that is implied from the K-Integr selective hedge, Equation (3), is 
𝝎௧
ᇱ𝒛௧ ൌ 𝐸௧ሺ∆𝑓௧ାଵ|Ω௧ሻ ൫𝛾 𝜎,௧

ଶ ൯⁄ , which can be rewritten as 𝐸௧ሺ∆𝑓௧ାଵ|୲ሻ ൌ 𝛾 𝜎,௧
ଶ ሺ𝝎௧

ᇱ𝒛௧ሻ. 
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∆𝑓௧ାଵ
ଶ െ ൫∆𝑓௧ାଵ െ ∆𝑓௧ାଵ

ௌு൯
ଶ

 is the squared error differential. The evidence in Table 4 suggests scant 

predictability, namely, the commodity futures return forecasts used as inputs in the selective hedges 

are not more accurate than the zero expected return that underlies the MinVar hedge.  

[Insert Table 4 around here] 

Does selective hedging accrue any additional return versus traditional hedging? To address this 

question, we estimate spanning regressions of the selective hedge portfolio returns on the MinVar 

hedge portfolio returns. The regression intercept or alpha is a measure of the additional return that 

is captured when incorporating the hedger’s view of the commodity futures market into the hedging 

program. Table 5 presents the annualized alpha alongside the robust Newey-West adjusted t-

statistics. With 20 positive alphas, we note the relative success of the K-Integr hedge. Yet, the 

ability of selective hedging to generate positive and statistically significant alpha remains 

negligible, namely, selective hedging does not capture additional returns versus traditional hedging.  

[Insert Table 5 around here] 

How does the risk reduction ability of selective hedging compare with that of traditional hedging?  

To address this question, we compare the variance of the selective and traditional hedge portfolio 

returns. To provide statistical significance to the findings, we follow Wang et al. (2015) and deploy 

the Diebold and Mariano (1995) test for the null hypothesis 𝐻:𝐸ൣሺ∆𝑝௧
ௌுሻଶ െ ሺ∆𝑝௧

ெሻଶ൧  0 

versus the alternative 𝐻ଵ:𝐸ൣሺ∆𝑝௧
ௌுሻଶ െ ሺ∆𝑝௧

ெሻଶ൧  0  with ሺ∆𝑝௧
ௌுሻଶ  and ሺ∆𝑝௧

ெሻଶ 

denoting the squared returns of the selective and traditional hedge portfolios, respectively.  

Table 6 presents the annualized hedge portfolio variances and the p-values of the Diebold and 

Mariano (1995) test. With a variance of 3.37% p.a. on average across commodities, the MinVar 

hedge portfolio stands out as the least volatile which suggests that traditional hedging provides the 
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best risk coverage. By contrast, the risk reduction achieved by selective hedging is not more 

appealing as borne by selective hedge portfolio variances which range from 3.45% (K-Integr 

hedge) to 8.46% (RF hedge) p.a. on average across commodities.6 The small p-values of the 

Diebold and Mariano (1995) test suggest that selective hedging significantly increases risk relative 

to traditional hedging. Thus, the primary goal of covering the risk of the spot position is undermined 

by selective hedging. Hence, both effects – the failure to improve the expected return and the larger 

variance – render selective hedging portfolios unappealing versus traditional hedging.  

[Insert Table 6 around here] 

There is an exceptional commodity, natural gas, for which selective hedging (with the HistAve and 

EWC forecasts) improves upon the traditional hedging effectiveness significantly at the 5% level 

as borne out by the expected utility gains (Table 3). The increase in expected utility stems from the 

significant return capture of the selective hedges (Table 5) for the same level of risk (Table 6).7  

Overall, although selective hedging is the optimal solution of theoretical models of hedging, it is 

challenging to make it worthwhile in practice because it requires the hedger to construct a 

commodity futures return forecast that is more accurate than the zero-return expectation that 

 

6 We additionally assessed the downside risk of the various hedge portfolios using the maximum 
drawdown and Gaussian 1% VaR measures. MinVar obtains the lowest maximum drawdown 
(11.67%) and the highest 1% VaR (-4.78%) as averaged across commodities. The corresponding 
measures for the selective hedges range from 11.92% to 22.11% for maximum drawdown and from 
-8.75% to -4.90% for VaR. The results therefore indicate that traditional hedging provides the best 
spot risk protection to the commodity producing firm also in terms of downside risk. 

7 The natural gas industry has undergone a dramatic transformation during the sample period 
through the shale gas revolution that increased supply and induced a downward trend in prices. As 
shown in Table 2, by contrast with all other commodities the expected return of natural gas futures 
contracts is not negligible but a significantly negative -33.62% p.a. which is more difficult to 
reconcile with the zero-return expectation, 𝐸௧ሺ∆𝑓௧ାଵ|Ω௧ሻ ൌ 0, that underlies the traditional hedge.  
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underlies the traditional hedging strategy. Selective hedging does not routinely provide additional 

utility to the commodity producer because its inferior risk coverage does not come accompanied 

by an increase in expected return. On the basis of this evidence, we assert that commodity producers 

are often better off by adhering to the simpler traditional hedging practice that rules out speculation.  

5. Robustness Tests  

In this section, we alter various aspects of the main empirical analysis to re-examine the 

effectiveness of selective hedging vis-à-vis traditional hedging. Only one feature of the baseline 

models is changed at a time, keeping all other features constant. In the interest of space, we report 

results on average across commodities with the disaggregated results available upon request. 

5.1. Alternative designs of the traditional hedge ratio  

As articulated in the theoretical framework of Anderson and Danthine (1981), the first component 

𝛽௧ of the mean-variance utility-maximizing hedge ratio, Equation (2), is the minimum-variance 

hedge ratio which is a function of two (co)variance parameters, 𝜎௦,௧ and 𝜎,௧
ଶ . Since Ederington 

(1979)’s seminal paper, the linear OLS regression has been widely used to consistently estimate 

𝛽௧; this is the traditional hedge ratio that we used in the main analysis (that we called MinVar).  

Wang et al. (2015) confront the naïve one-to-one hedge ratio (that emerges as proxy for 𝛽௧ under 

the assumption of no basis risk, 𝜎௦,௧ ൌ 𝜎,௧
ଶ ሻ and various hedge ratios within the minimum-

variance framework (i.e., alternative estimates for 𝛽௧). Their analysis reveals, first, that in an out-

of-sample setting, the risk coverage achieved by the naïve one-to-one hedge ratio is difficult to 

improve by the estimated 𝛽௧  and, second, that the rationale is both estimation error and model 

misspecification. We now operationalize 𝛽௧ in other ways: (a) the one-to-one hedge ratio advocated 

by Wang et al. (2015), and (b) through various refinements of the OLS regression model such as 
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the bivariate VAR model, bivariate VEC model, bivariate DCC-GARCH model, bivariate BEKK-

GARCH model, and Markov regime-switching OLS model.8  

 
Table 7 reports the expected utility gains of the traditional hedges and corresponding selective 

hedges. The main evidence on the difficulty of selective hedging to consistently be more effective 

than traditional hedging is not challenged. For example, the expected utility gain of traditional 

hedging at 16.33% p.a. on average across commodities and specifications of the traditional hedge 

ratio is similar or slightly lower than that of the corresponding selective hedges at 16.66% (K-

Integr), 15.62% (HistAve), 15.60% (EWC), 13.48% (AR), 9.62% (VAR) and 7.15% (RF) p.a.  

[Insert Table 7 around here] 

Table 7 also shows that the average utility gain of the MinVar hedge (16.27%) is very similar to 

that of the one-to-one traditional hedge (15.97%). Unreported results based on McCracken and 

Valente (2018) p-values for the null hypothesis 𝐻: Δ𝐸ሺ𝑈ெሻ  Δ𝐸ሺ𝑈ைି௧ିைሻ versus 𝐻ଵ: 

Δ𝐸ሺ𝑈ெሻ  Δ𝐸ሺ𝑈ைି௧ିைሻ show that for the majority of commodities the MinVar hedge 

does not significantly outperform the naïve one-to-one hedge. As per the recommendations of 

Wang et al. (2015), producers might therefore prefer the simplicity of the one-to-one hedge. 

5.2. Alternative specifications of the selective hedging strategies 

We now consider alternative designs of the selective hedging strategies. The goal is to provide 

more comprehensive evidence by deploying novel selective hedging approaches and, in turn, to 

give the selective hedging paradigm an ample opportunity to improve upon traditional hedging.  

 

8 Specifically, we estimate a bivariate VAR(1,1) model for spot and futures returns, a bivariate 
VEC(1,1) model, a bivariate DCC-GARCH(1,1) model, a  bivariate BEKK-GARCH(1,1), and the 
Markov regime-switching OLS hedge ratio that allows for high versus low volatility regimes.  
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We first consider different specifications of the EWC selective hedging strategies. Some general 

predictors may contaminate the forecast combination with noise. To address this concern, we focus 

the EWC selective hedge on the 10 commodity-specific features with well-established predictive 

ability in the commodity literature, and on the three characteristics (roll-yield, momentum, and 

value) of Barroso et al. (2022). The results suggest that trimming down the information set erodes 

the expected utility gain of the EWC selective hedge as shown in the “K=10” or “K=3” columns of 

Table 8, Panel A. Thus, the difficulty of consistently outperforming traditional hedging remains. 

[Insert Table 8 around here] 

Motivated by the literature on stock return forecasting (Rapach et al., 2010; Neely et al., 2014; 

Rapach and Zhou, 2022), we also depart from the equal-weighting approach used in the EWC 

hedge to combine the univariate regression forecasts. In particular, we weigh the forecasts by the 

inverse of their past mean squared errors (MSE) or according to an Elastic Net (E-Net) algorithm 

(Hollstein et al., 2021; Rapach and Zhou, 2022). Details on the MSE and E-Net approaches are 

provided in Appendix B. Table 8, Panel A, shows that the EWC selective hedge is very competitive 

vis-à-vis the MSE and E-Net variants and hence, our main finding holds. 

Following Neely et al. (2014), we extract the principal component(s) from the full set of predictors 

(𝐾 ൌ 37) and deploy two selective hedges which harness the predictive power of the first and first-

two principal components, respectively. The expected utility gains of these hedges, denoted PC1 

and PC1-2 in Table 8, Panel A, are not superior to those from traditional hedging either. 

Next, we deploy several variants of the K-Integr selective hedge which, according to our main 

analysis, is the closest competitor to MinVar. We begin by deploying K-Integr on the two subsets 

(𝐾 ൌ 10 and 𝐾 ൌ 3ሻ of commodity characteristics as predictors. We then incorporate a novel 
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Elastic Net (E-Net) regularization into the objective function, Equation (3), as detailed in Appendix 

C. We also modify the tracking error constraint in Equation (3) from 𝜍 ൌ 2% p.a. to a softer 𝜍 ൌ

ሼ 5%, 10%ሽ which allows the K-Integr hedge to deviate more from the MinVar hedge (benchmark) 

and thus, the speculative component can play a larger role. As shown in Table 8, Panel B, the 

expected utility gain of any of these K-Integr hedges is similar to the expected utility gain of the 

MinVar hedge, which confirms the difficulty of beating the much simpler to estimate MinVar 

hedge ratio. It is worth noting that when we deploy the K-Integr hedge portfolio in a way that 

permits its returns to deviate more from the MinVar hedge portfolio returns by increasing 𝜍 (i.e., a 

larger role is allowed to speculation) the expected utility gain of the K-Integr hedge decreases. 

We deploy another version of the K-Integr hedge by pooling the data. The goal is to harness any 

increase in the estimation efficiency of the 𝐾 ൈ 1 loadings 𝝎𝒕 of the commodity futures predictors 

𝒛௧. Specifically, the representative hedger solves the same optimization problem, Equation (3), 

using pooled data across 𝑁 ൌ 24 commodities – thus, at each hedge formation time the hedger 

uses a sample of size of at most 𝑇 ൈ 𝑁 for each variable. The outcome is a single vector of loadings 

𝝎𝒕ෞ  that exploits both the time variation and cross-sectional variation in the data (instead of the 

individual 𝜔ෝ,௧ , 𝑖 ൌ 1, . . . ,𝑁  obtained from the time-series estimation of the K-Integr hedge in 

Section 4). The results in the last column of Table 8, Panel B, suggest that the expected utility gain 

of the pooled K-Integr hedge at 16.63% p.a. across commodities is nearly identical to the 16.61% 

p.a. expected utility gain obtained on average in Table 3 for the K-Integr hedges deployed per 
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commodity. 9  Altogether the results from various K-Integr hedges reiterate that commodity 

producers should not embed a speculative motive into their hedging programs. 

Next, we deploy additional selective hedges that harness forecasts from state-of-the-art machine 

learning methods over and above the random forests (RF) deployed earlier. For consistency, we 

begin by deploying the RF with the smaller subsets of predictors (K=10 or K=3 commodity 

characteristics). Second, following Fischer and Krauss (2018), Gu et al. (2020), Chen et al. (2023), 

and Rad et al. (2023), we implement deep neural networks (DNN) with two hidden layers (DNN2 

using 32 and 16 nodes in each respective layer) and three hidden layers (DNN3 with 32, 16 and 8 

nodes). These same DNN architectures are then augmented with 4 or 8 long-short term memory 

(LSTM) hidden units which are intended to capture long-run nonlinear predictability patterns.10 

Table 8, Panel C, presents the results. None of these sophisticated selective hedges affords higher 

expected utility gains than the MinVar hedge, which is not surprising since the (unreported) 𝑅ைைௌ
ଶ  

measures of the machine-learning forecasts are generally negative or zero suggesting that they do 

not outperform the zero-return forecast benchmark. This finding is aligned with the mixed results 

in Wang and Zhang (2024) on the ability of machine learning methods to predict individual 

 
9 This inference is unchanged if we add the E-Net regularization to the panel or if we adopt the 
softer tracking error constraints 𝜍 ൌ ሼ 5%, 10%ሽ. 

10 The steps of these machine learning approaches are similar to those of the RF approach, as 
detailed in Section 4.1, but the estimation is based on a maximum number of epochs (set at 100), 
batch size (20% of trained sample), patience (5), learning rate (0.001 or 0.01), Adam optimization 
with Huber loss function (transition coefficient at 99.9% quantile); and the overfitting penalties are 
early stopping, dropout layer (5%), batch normalization, ensemble net (500) and l2 regularization 
(10-5 or 10-3). The number of LSTM units follows from Chen et al. (2023) and Rad et al. (2023). 
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commodity futures returns, and more generally with the comprehensive evidence in Cakici et al. 

(2023) who challenge the practical utility of machine learning methods to predict stock returns.11  

Since the seminal paper of Bates and Granger (1969), the combination of forecasts from different 

methods has been advocated in the literature to reduce the out-of-sample mean squared error. Thus, 

we deploy a selective hedge (denoted Comb) that uses as input the equal-weighted combination of 

the competing forecasts: HistAve, AR, VAR, EWC, K-Integr, and RF. We observe an improvement 

from the Comb selective hedge, but the MinVar hedge remains difficult to beat.  

Next, we implement a selective hedge that uses as inputs the futures returns forecasts from cross-

sectional (CS) predictive regressions in the spirit of Fama and MacBeth (1973) and Lewellen 

(2015). First, we estimate each week the slopes from cross-sectional regressions of the commodity 

futures returns at week t on commodity-specific characteristics at week t-1. The estimated cross-

sectional slopes are then averaged over the 10 years preceding hedging decision and these averages 

are used, alongside the most recent commodity characteristics, to forecast commodity futures 

returns one week ahead. Table 8, Panel D, shows that the CS selective hedge (using K=10 and K=3 

predictors) does not outperform the MinVar hedge regardless of the information set considered.  

Lastly, under the assumption that the futures curve remains unchanged, the roll-yield today lends 

itself as a naïve forecast of the expected futures return. Specifically, we construct a Naïve Basis 

 

11 We expand the information set of the ML models using the FRED-MD database of McCraken 
and Ng (2016) from Dr. M. McCraken’s website. We augment the 126 FRED-MD series with the 
15 financial, macroeconomic and sentiment predictors from Appendix A that are excluded from 
McCracken and Ng (2016), extract 8 principal components from the augmented dataset and 
complement it with the 10 commodity-specific predictors. This alternative information set does not 
challenge our main finding on the difficulty of outperforming MinVar. 
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selective hedge using the forecast 𝐸௧ሺ∆𝑓௧ାଵ|Ω௧ሻ ൌ
௬ௗ


ൈ 7 where 𝑟𝑦𝑖𝑒𝑙𝑑௧ ൌ 𝑓௧,ଵ െ 𝑓௧,ଶ,  with 

𝑓௧,ଵ  and 𝑓௧,ଶ the log prices of the front and second-nearest contracts, respectively, and 𝐷௧  the 

number of calendar days between their maturities. As seen in the last column of Table 8, Panel D, 

the Naïve-Basis hedging strategy is not more effective than the traditional MinVar hedge.  

5.3. Are the findings sample specific? 

To assess whether our key finding is time specific, we deploy the strategies over subsamples. We 

classify the sample weeks as i) pre versus post financialization (dated January 2006, Stoll and 

Whaley, 2010), ii) backwardated versus contangoed (positive versus negative commodity-specific 

roll-yields), iii) U.S. recessions versus expansions (NBER) and iv) high versus low volatility. The 

volatility split is defined relative to the median value of two volatility measures: the GARCH(1,1) 

volatilities of each commodity spot returns and the macro uncertainty index of Jurado et al. (2015). 

The expected utility gains of the hedging strategies over subsamples, shown in Table 9, support 

our finding that it is very difficult for selective hedging to consistently outperform traditional 

hedging. The results also confirm the economic intuition that commodity producers extract more 

utility from hedging in contango, during recessions, and in periods of high volatility.  

[Insert Table 9 around here] 

5.4. Non-constant risk aversion 

Thus far we have assumed a constant coefficient of relative risk aversion ሺ𝛾 ൌ 5ሻ. Now we deploy 

the selective hedge ratio ℎ௧ ൌ 𝛽௧ െ
ா൫∆𝑓௧ାଵหΩ௧൯

ఊ ఙ,
మ  adopting as values for 𝛾௧ the relative risk aversion 

estimated by Bekaert et al. (2022) which has an average value of 3.0624 over our sample period. 

Thus, the speculative term plays a larger (smaller) role in periods of low (high) risk aversion. Table 

10 reports the expected utility gains obtained for the various hedges and corroborates the difficulty 
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of outperforming the traditional MinVar hedge. The expected utility gain of MinVar (9.41% p.a.) 

is similar to that of the K-Integr hedge (9.83% p.a.) and superior to those of the HistAve, EWC, 

RF and AR hedges (at 8.58%, 8.54%, 6.01% and 4.70% p.a., respectively). The expected utility 

gain of the VAR hedge is negative (-1.71% p.a.), suggesting that producers are better off by not 

hedging their commodity spot risk at all rather than by selectively hedging it upon VAR forecasts. 

[Insert Table 10 around here] 

5.5. Estimation window and rebalancing frequency 

Our investigation thus far has relied on hedge ratios constructed with past rolling estimation 

windows of length 𝐿 ൌ520 weeks (10 years) which are rebalanced weekly. The expected utility 

gains obtained with expanding windows (starting with L = 520 weeks, and adding one week at a 

time), as shown in Table 10, are very similar to those from the rolling window analysis in Table 3.  

Given that the commodity hedging literature has predominantly adopted daily (Baillie and Myers, 

1991), weekly (Cotter and Hanly, 2010, 2012; Wang et al., 2015) or monthly (Cotter and Hanly, 

2010, 2012; Furió and Torró, 2020) hedging frequencies, the weekly hedging frequency we use 

can be seen as a reasonable middle-ground.12 Nevertheless, in this robustness test we consider 

monthly (month-end settlement prices) and quarterly (quarter-end settlement prices) rebalancing. 

The lower rebalancing improves hedging utility for both traditional and selective hedging, as seen 

in Table 10, but the main finding that traditional hedging is difficult to outperform remains.  

5.6. Alternative futures maturities 

 
12 Bodnar et al. (1998) document large firm heterogeneity in hedging frequency from surveys of 
399 non-financial firms; 28% revalue their derivatives portfolios daily or weekly, 27% monthly, 
21% quarterly and 5% annually. The remaining firms rebalance their hedges on an ad-hoc basis.  
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We have implemented the hedges with front-end futures contracts. As a robustness, we construct 

hedges that use instead the second (third, fourth, fifth or sixth) maturity contracts along the futures 

curve, where each contract is held up to the last day of the month preceding the maturity of the 

front-end contract with the position then rolled to the then third (fourth, fifth, sixth or seventh, 

respectively) contract. The results, presented in Table 10, highlight the superiority across maturities 

of the MinVar and K-Integr hedges in terms of expected utility gains. The expected utility gains 

decrease with the maturities of the hedging instruments due to an increase in basis risk.  

5.7. Long hedging 

The representative hedger is thus far a commodity producer, that is, the traditional hedge is short. 

We now address the hedging problem of a processor or a consumer of the physical commodity 

(long hedger) with hedge portfolio return given by ∆𝑝௧ାଵ ൌ െ∆𝑠௧ାଵ  ℎ௧∆𝑓௧ାଵ . The selective 

hedge ratio that maximizes expected utility is ℎ௧ ൌ 𝛽௧ 
ா൫∆𝑓௧ାଵหΩ௧൯

ఊ ఙ,
మ   where the first component    

is the traditional MinVar hedge ratio, 𝛽௧  ൌ
ఙೞ,

ఙ,
మ , and the second component is speculative. 

The last row of Table 10 presents the expected utility gains of the long hedges. Over the sample 

period under study, the expected utility gain of short hedging is 4.87% p.a. higher than that obtained 

via long hedging on average across commodities and hedging strategies (c.f., Table 3). However, 

this average across commodities conceals large heterogeneity. For example, unreported results 

show that for natural gas the expected utility gain of short hedging exceeds that of long hedging by 

53.47% p.a. on average across hedging strategies, while for unleaded gasoline the expected utility 

gain of long hedging is 26.69% p.a. larger than that of short hedging. This notwithstanding, our 

main conclusion remains: selective hedging is not consistently superior to traditional hedging for 

commodity consumers either. 



26 
 

5.8. Hedging problem of a diversified producer 

Our paper follows the commodity markets hedging literature in formalizing and examining 

empirically the hedging problem at the individual commodity level (e.g., Ederington, 1979; 

Anderson and Danthine, 1981, 1983; Pirrong, 1997; Cotter and Hanly, 2010, 2012; Wang et al., 

2015; Furió and Torró, 2020; Carter et al., 2021). Inspired by the cross-currency K-Integr hedging 

setting of Barroso et al. (2022), we now consider a firm that produces various commodities. 

Without loss of generality, we assume that the diversified commodity producer has equal exposure 

1/𝑁 to the commodities (i.e., 𝑁 ൌ 24). The cross-commodity K-Integr hedger solves the problem,  

max
𝝎𝒕

𝐸௧ൣ𝑈൫∆𝑝෪௧ାଵ
ିூ௧ሺ𝝎𝒕ሻ൯ห௧൧ ,                                                 (6) 

 
subject to the tracking error constraint 𝜎൫∆𝑝෪௧ାଵ

ெ െ ∆𝑝෪௧ାଵ
ିூ௧ሺ𝝎𝒕ሻ൯  𝜍 in order to identify the 

loadings 𝝎𝒕 that maximize the expected utility of the cross-commodity hedge portfolio return,  

∆𝑝෪௧ାଵ
ିூ௧ሺ𝝎𝒕ሻ ൌ

ଵ

ே
∑ ൫∆𝑠,௧ାଵ െ ൫𝛽,௧ െ ∑ 𝜔௧𝑧,,௧


ୀଵ ൯∆𝑓,௧ାଵ൯ ൌ

ே
ୀଵ                   (7) 

1
𝑁
∆𝑠,௧ାଵ െ 

1
𝑁
𝛽,௧∆𝑓,௧ାଵ

ே

ୀଵ

െ
1
𝑁
൭𝜔,௧𝑧,,௧



ୀଵ

൱∆𝑓,௧ାଵ

ே

ୀଵ

൩ ,

ே

ୀଵ

 

where the ith commodity spot return and futures return are given by ∆𝑠,௧ାଵ and ∆𝑓,௧ାଵ, and its 

MinVar hedge ratio by 𝛽,௧ . The return of the cross-commodity MinVar portfolio ∆𝑝෪௧ାଵ
ெ ൌ

ଵ

ே
∑ ൫∆𝑠,௧ାଵ െ 𝛽,௧∆𝑓,௧ାଵ൯
ே
ୀଵ   arises from Equation (7) by setting 𝝎𝒕 ൌ 0 to mute the speculative 

component. It is worth noting that this K-Integr hedge constraints the unknown coefficients 

𝝎𝒕 ൌ ሺ𝜔ଵ,௧ , … ,𝜔,௧ሻ′ to be common across commodities so that it is similar to the parametric 

portfolio policies (PPP) approach where the vector of loadings on asset characteristics is the same 
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for all assets over time (e.g., Brandt et al., 2009; Barroso et al., 2022).13 The results suggest that 

with an expected utility gain of 4.00% p.a., the cross-commodity K-Integr hedge improves upon 

the cross-commodity traditional MinVar hedge (3.48% p.a.) but the differential is not statistically 

significant as suggested by the p-value of the McCraken-Valente test for difference in expected 

utility gains (0.26). Therefore, selective hedging is not significantly more effective than traditional 

hedging for a diversified commodity producer either.  

6. Conclusions 

This article provides a comprehensive analysis of traditional and selective hedging strategies in 

commodity futures markets. Traditional minimum-variance hedging is found to provide expected 

utility gains that are at least as high as those obtained with selective hedging. The difficulty of 

selective hedging to outperform traditional hedging reflects the low out-of-sample time-series 

predictability of individual commodity futures returns – the forecasts obtained increase the risk of 

the hedge portfolio without generating an additional return. These findings hold for a large 

spectrum of commodities, different methods to construct commodity futures return forecasts, 

alternative specifications of the traditional hedge ratios, and various subsamples, estimation 

windows, and hedge rebalancing frequencies inter alia.  

Selective hedging strategies based on publicly available information fail to deliver strong and 

consistent outperformance relative to traditional hedging. Our strong recommendation therefore is 

 

13 Leaving aside the spot return, the return of the cross-commodity K-Integr hedge is similar to the 
return of the PPP portfolio in that both comprise a benchmark portfolio return and a characteristics 
portfolio return. However, while K-Integr uses both commodity characteristics and financial, 
macroeconomic and sentiment variables as predictors, in the PPP setting of Brandt et al. (2009) 
and Barroso et al. (2022) deviations from the benchmark return depend solely on asset 
characteristics. 
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that commodity traders shall not abandon traditional hedging in favor of selective hedging. This 

message echoes the concerns raised from the analysis of specific speculative-led commodity 

hedging fiascos (Pirrong, 1997; Carter et al., 2021; Westgaard et al., 2022) and is aligned with the 

evidence on the (at-best) small increases in firm value obtained through selective hedging (Adam 

and Fernando, 2006; Brown et al., 2006). The conclusion drawn is based on futures return 

predictions that exploit publicly available information, which leaves open the possibility that 

private information might help in designing better selective hedges. While we acknowledge this 

limitation, we endorse traditional hedging over selective hedging to those firms that do not have 

consistent and substantial access to reliable private information. 
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Appendix A: Commodity futures return predictors. 

 

LH (SH) denotes the long (short) positions of large hedgers. A positive (negative) hedging pressure indicates net short (long) hedging and thus 
backwardation (contango). (*) indicates that we employ weekly interpolation, that is, the weekly values are set at the highest frequency available 
value which are monthly. (**) indicates that we use the two-month lagged time-series to accommodate delays in data publication release. 

Signal Data source References

Panel A:  Commodity futures characteristics
Roll‐yield Log price differential between front‐ and second‐nearest contracts Refinitiv Datastream Szymanowska et al. (2014)

Momentum Front‐end log excess returns averaged over the previous year  Refinitiv Datastream Miffre and Rallis (2007)

Value Average log front‐end futures price over the D days spanning the period 4.5 to 5.5
years before t  minus front‐end log futures price at time t

Refinitiv Datastream Asness et al. (2013)

Hedging pressure Net short weekly positions of large commercial traders (hedgers) over their total
positions averaged over the prior year

CFTC Basu and Miffre (2013)

Hedgers' net position change  Weekly change in net long position of hedgers, normalized by open interest CFTC Kang et al. (2020)

Basis‐momentum Difference in average excess returns between front‐ and second‐nearest contracts
on the prior year

Refinitiv Datastream

Skewness Third moment of the D  daily front‐end excess returns within the past year Refinitiv Datastream Fernandez‐Perez et al. (2018)

Relative basis Difference in front‐ and second‐nearest roll‐yields Refinitiv Datastream Gu et al. (2023)

Illiquidity Absolute excess return of the front‐end futures contract per weekly dollar volume
as averaged over the W  weeks within the past two months

Refinitiv Datastream Szymanowska et al. (2014)

Change in open interest Change in the average open interest along the futures curve Refinitiv Datastream Hong and Yogo (2012)

Panel B:  Financial, macroeconomic  and sentiment indicators
Term spread St. Louis FED Gargano and Timmermann (2014)
Default spread St. Louis FED Gargano and Timmermann (2014)
TED spread St. Louis FED Gargano and Timmermann (2014)
T‐bill rate St. Louis FED Gargano and Timmermann (2014)
Bond yield St. Louis FED Hollstein et al. (2021)
Equity returns Prof. Amit Goyal Hollstein et al. (2021)
Dividend yield Prof. Amit Goyal Gargano and Timmermann (2014)
Earning price ratio Prof. Amit Goyal Hollstein et al. (2021)
Industrial production St. Louis FED Gargano and Timmermann (2014)
Money supply St. Louis FED Gargano and Timmermann (2014)
Unemployment rate St. Louis FED Gargano and Timmermann (2014)
Inflation rate Prof. Amit Goyal Gargano and Timmermann (2014)
Foreign exchange rates Refinitiv Datastream Gargano and Timmermann (2014)
National activity index Chicago FED Cotter et al. (2023)
EPU Prof. Scott R. Baker
GPR Prof. Matteo Iacoviello
Baltic dry index Refinitiv Datastream Bakshi et al. (2014)
Real economic activity St. Louis FED Gargano and Timmermann (2014)
Business confidence index OECD Hollstein et al. (2021)
Consumer confidence index OECD Hollstein et al. (2021)
Sentiment index Prof. Jeffrey Wurgler
Uncertainty index Prof. Nancy Wu 
VIX Refinitiv Datastream Hollstein et al. (2021)

US market excess return
Difference between the log of dividends and the log of lagged prices (*)
Difference between the log of earnings and the log of prices (*)
Log change in U.S. industrial production (*, **)

Definition at the time of portfolio formation t

Yield difference between 10‐year Treasury bonds and 3‐month Treasury bills
Yield difference between Moody’s seasoned Baa and Aaa corporate bonds
Difference between 3‐month U.S. LIBOR rate and 3‐month U.S. T‐bill rate
3‐month U.S. Treasury bill rate

Households’ surveys regarding sentiment on economic and financial situation, unemployment and savings capability (*, **)
Sentiment index of Baker and Wurgler (2006)  (*)
Uncertainty index of Bekaert et al. (2022)
CBOE's volatility index

Log change in economic policy uncertainty index
Log change geopolitical risk index
Log change in the Baltic dry index: Weighted average freight price
(Change) real economic activity index of Kilian (2009)  (*, **)
Business's surveys on developments in production, orders and stocks of finished goods in the industry sector  (*, **)

Log change in M1 money supply (*, **)
Number of unemployed as a percentage of the US labor force (*, **)
US consumer price index (all urban consumers) (*, **)
Log changes in U.S. dollar vs. A.U. dollar, C.A. dollar, N.Z. dollar, S.A. rand, Indian rupee
Weighted average of 85 monthly indicators of national economic activity  (*, **)

Long‐term U.S. bond yield
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Appendix B: Alternative specifications of the EWC selective hedge 

The EWC hedge ratio is based on expectations of futures returns derived from the combination of 
univariate forecasts from K predictors; 𝐸௧ሺ∆𝑓௧ାଵ|୲ሻ ൌ 𝝎௧

ᇱ∆𝒇௧ାଵ with ∆𝑓መ,௧ାଵ ൌ 𝛼ො,௧  𝛼ොଵ,௧𝑧,௧ , 

𝑘 ൌ 1, … ,𝐾, and 𝝎௧
ᇱ ൌ ቀ

ଵ


, … ,

ଵ


ቁ. We now entertain alternative weighting schemes. 

MSE weighting scheme 

The MSE weighting scheme depends on forecast accuracy, with higher weights assigned to the 
forecasts with lower mean squared error (MSE). The weights are calculated as follows. Each hedge 
formation week t, the window of 𝐿 ൌ 520 weeks is divided into an estimation window and an 

evaluation or holdout window of equal length (𝐿 ൌ 𝐿ଵ ൌ


ଶ
 ). The first  𝐿 weeks are used to 

generate the K out-of-sample univariate forecasts of futures returns, ∆𝑓መ,௧ାଵ, for the first week of 
the evaluation period. The estimation window is then expanded by one week and a second set of K 
forecasts is generated for the second week of the evaluation period, and so forth. The MSE is 
calculated over the 𝐿ଵ  period as 𝑀𝑆𝐸,௧ ൌ ∑ ሺ∆𝑓௧ିାଵ െ

భିଵ
ୀ ∆𝑓መ,௧ିାଵሻଶ 𝐿ଵൗ . The weighting 

scheme used at time t to generate 𝐸௧ሺ∆𝑓௧ାଵ|୲ሻ  is then 𝜔,௧ ൌ
ெௌாೖ,

షభ

∑ ெௌாೖ,
షభ಼

ೖసభ
.  This procedure is 

repeated at the next rebalancing time t+1.  

E-Net weighting scheme  

The Elastic Net (E-Net) weighting scheme reduces the complexity of the predictive model by 
adding the elastic net penalty terms to the loss function of the forecast combination. The E-Net 
weights are obtained as follows: at each hedge formation week t, we divide the prior 𝐿 ൌ 520  

weeks window into an estimation window and an evaluation (holdout) window (𝐿 ൌ 𝐿ଵ ൌ


ଶ
 ) and 

repeat the steps for MSE weighting scheme to obtain the forecasts over the evaluation window, 𝐿ଵ. 
Then, we solve the following minimization problem over the evaluation period, 

min
ೖ,

 ൬∆𝑓௧ିାଵ െ 𝑏,௧∆𝑓መ,௧ିାଵ



ୀଵ
൰
ଶ


భିଵ

ୀ
𝜆௧ ൬0.5ሺ1 െ 𝛿ሻ ห𝑏,௧ห



ୀଵ
 𝛿 𝑏,௧

ଶ


ୀଵ
൰, 

where ∆𝑓መ,௧ିାଵ, 𝑘 ൌ 1, … ,𝐾, are the univariate forecasts obtained over the evaluation period, and 
𝜆௧ and 𝛿 are the LASSO and Ridge regularization parameters, respectively. We set 𝛿 ൌ 0.5 and 
select 𝜆௧ using the adjusted AIC of Hurvich and Tsai (1989). The E-Net weighting scheme used at 

time t to generate 𝐸௧ሺ∆𝑓௧ାଵ|Ω௧ሻ is then 𝜔,௧ ൌ
ூ൫ೖ,வ൯

∑ ூ൫ೖ,வ൯
಼
ೖసభ

 , with 𝐼ሺ∙ሻ an indicator variable. The 

selective E-Net hedge is thus based on what can be interpreted as a sparse combination of K 
univariate regression forecasts. 
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Appendix C: K-Integr (with E-Net regularization) selective hedge. 

The K-Integr objective function with an Elastic Net (E-Net) regularization combines a LASSO 
penalty and a Ridge penalty for overfitting. The maximization problem of the hedger then becomes, 

max
𝝎𝒕

𝐸௧ൣ𝑈൫∆𝑝௧ାଵ
ିூ௧ሺ𝝎𝒕ሻ൯ห௧൧ ൌ 

max
𝝎𝒕

𝐸௧ൣ𝑈൫∆𝑠௧ାଵ െ ሺ𝛽௧ െ 𝝎𝒕′𝒛௧ሻ∆𝑓௧ାଵ െ 𝜆ଵ,௧ ∑ ห𝜔,௧ห

ୀଵ െ 𝜆ଶ,௧ ∑ 𝜔,௧

ଶ
ୀଵ ൯ห௧൧, 

subject to the constraint 𝜎൫∆𝑝௧ାଵ
ெ െ ∆𝑝௧ାଵ

ିூ௧ሺ𝝎𝒕ሻ൯  𝜍.  ∆𝑠௧ାଵ , ∆𝑓௧ାଵ , ∆𝑝௧ାଵ
ିூ௧  and 

∆𝑝௧ାଵ
ெ are the spot, futures, K-Integr and MinVar returns for a given commodity i at time t+1, 

respectively, 𝛽௧  is the MinVar hedge ratio of commodity i at time t estimated using L past 
observations, 𝝎𝒕′ is a 1 ൈ 𝐾  vector of loadings, 𝒛௧ is the 𝐾 ൈ 1  vector of standardized predictors 
at time t, and  𝜆ଵ,௧ and 𝜆ଶ,௧ are the LASSO and Ridge penalty parameters, respectively, that we set 
to the same pre-specified value to speed up computation time, i.e., 𝜆ଵ,௧ ൌ 𝜆ଶ,௧ ൌ 𝜆௧.  

The estimation of the K-Integr is as follows. First, the rolling estimation window at hand (𝐿 ൌ
520 weeks) is divided into an optimization sample (first 60% weeks of the estimation window) 
and an evaluation sample (second 40% weeks of the estimation window). Second, the first sample 
is used to optimize the weights 𝝎𝒕based a pre-specified 𝜆௧, and the expected utility gain of the 
optimized portfolio is measured over the evaluation sample. This step is repeated for a range of 
pre-specified 𝜆௧ (i.e., twenty evenly-spaced values from 0.0073 to 0.00001). Third, we select the 
𝜆௧ value that generates the largest expected utility of the optimized portfolio over the evaluation 
sample. Finally, the selected 𝜆௧ is used to find the weights, 𝝎𝒕, by maximizing the K-Integr (with 
E-Net) objective function over the entire estimation (optimization and evaluation) sample. 
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Figure 1. Evolution of traditional and selective hedge ratios for a cocoa producer 

This figure plots the traditional MinVar hedge ratio (in black) and six alternative selective hedge 
ratios (in grey) for a representative cocoa producer with assumed mean-variance utility function 
and coefficient of relative risk aversion  ൌ 5. The rebalancing frequency is weekly. 

 

 

 

  



36 
 

Figure 2. Standard deviation of the hedge ratios  

This figure plots the standard deviations of the traditional MinVar hedge ratio and six alternative 
selective hedge ratios for a representative commodity producer with assumed mean-variance utility 
function and coefficient of relative risk aversion  ൌ 5. The reported statistics are averages across 
commodities. 
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Table 1. Selective hedging strategies. 

 

Note: 𝛽௧ is the traditional MinVar hedge ratio that minimizes the variance of the hedge portfolio. 



38 
 

Table 2.  Descriptive statistics of spot and futures returns. 

The table presents summary statistics for the returns of spot and front-end fully-collateralized 
futures positions, as well as the spot-futures returns correlations. Mean, variance and expected 
utility are annualized. The utility function is mean-variance with coefficient of relative risk 
aversion 𝛾 ൌ 5. Newey-West t-statistics for the significance of the mean return are in parentheses 
and p-values for the significance of the correlation are in curly brackets. The last two columns 
report the data span. 

 

Variance Utility Variance Utility Start End

Panel A: Agriculture

Cocoa 0.0190 (0.33) 0.0688 ‐0.1531 0.0383 (0.61) 0.0854 ‐0.1753 0.82 {0.00} 29/09/2003 23/12/2019

Coffee 0.0551 (0.88) 0.0642 ‐0.1053 ‐0.0354 (‐0.49) 0.0967 ‐0.2771 0.69 {0.00} 29/09/2003 23/12/2019

Corn 0.0322 (0.44) 0.0904 ‐0.1938 ‐0.0516 (‐0.71) 0.0828 ‐0.2586 0.93 {0.00} 29/09/2003 23/12/2019

Cotton 0.0065 (0.09) 0.0859 ‐0.2083 ‐0.0107 (‐0.15) 0.0825 ‐0.2170 0.94 {0.00} 29/09/2003 23/12/2019

Frozen orange juice 0.0179 (0.23) 0.1192 ‐0.2801 ‐0.0082 (‐0.11) 0.1135 ‐0.2919 0.97 {0.00} 29/09/2003 23/12/2019

Soybeans 0.0234 (0.34) 0.0719 ‐0.1562 0.0704 (1.16) 0.0598 ‐0.0791 0.95 {0.00} 29/09/2003 23/12/2019

Soybeans meal  0.0206 (0.25) 0.1137 ‐0.2635 0.1206 (1.69) 0.0792 ‐0.0773 0.90 {0.00} 29/09/2003 23/12/2019

Soybeans oil  0.0186 (0.31) 0.0650 ‐0.1439 ‐0.0106 (‐0.19) 0.0590 ‐0.1582 0.97 {0.00} 29/09/2003 23/12/2019

Sugar 0.0437 (0.57) 0.0954 ‐0.1948 ‐0.0430 (‐0.55) 0.0947 ‐0.2798 0.91 {0.00} 29/09/2003 23/12/2019

Wheat 0.0369 (0.40) 0.1416 ‐0.3172 ‐0.0961 (‐1.27) 0.0974 ‐0.3397 0.83 {0.00} 29/09/2003 23/12/2019

Panel B: Energy

Crude oil 0.0495 (0.55) 0.1403 ‐0.3013 ‐0.0284 (‐0.32) 0.1145 ‐0.3146 0.94 {0.00} 29/09/2003 23/12/2019

Gasoline RBOB ‐0.1390 (‐0.73) 0.0846 ‐0.3504 ‐0.0332 (‐0.21) 0.0478 ‐0.1528 0.82 {0.00} 03/10/2011 02/03/2015

Heating oil 0.0651 (0.81) 0.1096 ‐0.2088 0.0270 (0.34) 0.0937 ‐0.2074 0.95 {0.00} 29/09/2003 23/12/2019

Natural gas ‐0.0431 (‐0.34) 0.4698 ‐1.2176 ‐0.3362 (‐3.25) 0.1806 ‐0.7876 0.60 {0.00} 29/09/2003 23/12/2019

Unleaded gas 0.2041 (0.82) 0.2038 ‐0.3053 0.2938 (1.38) 0.1342 ‐0.0417 0.89 {0.00} 29/09/2003 04/12/2006

Panel C: Livestock

Feeder cattle 0.0660 (1.14) 0.0398 ‐0.0336 0.0568 (1.20) 0.0239 ‐0.0030 0.41 {0.00} 29/09/2003 06/07/2015

Lean hogs 0.0197 (0.19) 0.0724 ‐0.1612 ‐0.0666 (‐0.89) 0.0579 ‐0.2114 0.30 {0.00} 29/09/2003 06/07/2015

Live cattle 0.0191 (0.45) 0.0314 ‐0.0594 0.0152 (0.40) 0.0267 ‐0.0514 0.53 {0.00} 29/09/2003 23/12/2019

Panel D: Metal and Lumber

Copper 0.0752 (1.02) 0.0685 ‐0.0961 0.0919 (1.25) 0.0701 ‐0.0834 0.98 {0.00} 29/09/2003 23/12/2019

Gold 0.0825 (2.05) 0.0306 0.0061 0.0758 (1.89) 0.0307 ‐0.0009 0.99 {0.00} 29/09/2003 23/12/2019

Lumber ‐0.0048 (‐0.06) 0.0973 ‐0.2482 ‐0.1083 (‐1.41) 0.1010 ‐0.3609 0.36 {0.00} 29/09/2003 12/08/2019

Palladium 0.1322 (1.72) 0.0951 ‐0.1055 0.1267 (1.64) 0.0965 ‐0.1146 0.96 {0.00} 29/09/2003 23/12/2019

Platinum 0.0173 (0.29) 0.0509 ‐0.1099 0.0202 (0.34) 0.0524 ‐0.1109 0.96 {0.00} 29/09/2003 23/12/2019

Silver 0.0736 (0.98) 0.0983 ‐0.1723 0.0636 (0.84) 0.0981 ‐0.1817 0.98 {0.00} 29/09/2003 23/12/2019

Spot Futures Correlation Sample period

Mean Mean
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Table 3.  Expected utility gain. 

The table reports the annualized expected utility gains achieved by the traditional MinVar and 
selective hedging strategies derived with HistAve, AR, VAR, EWC, K-Integr and RF forecasts. 
The utility function is mean-variance with coefficient of relative risk aversion 𝛾 ൌ 5. Positive 
numbers indicate that hedging the spot position provides greater expected utility to the hedger than 
not hedging (c.f. Table 2). The numbers in parentheses are bootstrap p-values for the McCracken 
and Valente (2018) statistic with 𝐻:Δ𝐸൫𝑈൯ ൌ Δ𝐸ሺ𝑈ௌுሻ െ Δ𝐸ሺ𝑈ெሻ  0  versus 
𝐻ଵ:Δ𝐸൫𝑈൯  0, where Δ𝐸ሺ𝑈ሻ is the expected utility gain as defined in Equation (4) and 
𝑆𝐻 stands for the selective hedging strategy at hand. The average expected utility gains across 
commodities are summarized in Panel E before and after transaction costs (TC) of 8.6 basis points 
(Marshall et al., 2012). The sample periods are as detailed in Table 2.  

 

  

Panel A: Agriculture

Cocoa 0.0836 0.0745 (0.88) 0.0668 (0.90) 0.0447 (0.86) 0.0662 (0.97) 0.0848 (0.63) 0.0454 (0.88)

Coffee 0.0936 0.0752 (0.96) 0.0341 (0.98) 0.0139 (0.82) 0.0781 (0.89) 0.1000 (0.26) 0.0588 (0.89)

Corn 0.2473 0.2261 (0.96) 0.1871 (0.98) 0.1682 (0.92) 0.2204 (0.97) 0.2495 (0.39) 0.2059 (0.82)

Cotton 0.1955 0.1784 (0.95) 0.1452 (1.00) 0.0782 (0.97) 0.1768 (0.94) 0.1981 (0.37) 0.1378 (0.89)

Frozen orange juice 0.2881 0.2704 (0.97) 0.2299 (1.00) 0.1369 (0.99) 0.2655 (0.99) 0.2816 (0.76) 0.2395 (0.89)

Soybeans 0.0893 0.0840 (0.63) 0.0507 (0.94) 0.0165 (0.90) 0.0783 (0.74) 0.0948 (0.28) ‐0.0109 (0.86)

Soybeans meal  0.1012 0.0956 (0.56) 0.0121 (0.99) ‐0.0492 (0.94) 0.0930 (0.61) 0.1082 (0.24) 0.0031 (0.86)

Soybeans oil  0.1658 0.1541 (0.88) 0.1387 (0.89) 0.1374 (0.79) 0.1462 (0.94) 0.1695 (0.34) 0.0736 (0.88)

Sugar 0.2372 0.2260 (0.87) 0.2070 (0.95) 0.1919 (0.97) 0.2260 (0.83) 0.2472 (0.18) 0.1911 (0.88)

Wheat 0.3426 0.3204 (0.93) 0.2929 (0.97) 0.2646 (0.99) 0.3219 (0.90) 0.3382 (0.69) 0.2604 (0.93)

Panel B: Energy

Crude oil 0.3468 0.3197 (0.95) 0.2966 (0.94) 0.1988 (0.94) 0.3464 (0.46) 0.3509 (0.31) 0.3333 (0.78)

Gasoline RBOB 0.1766 0.1647 (0.67) 0.2438 (0.52) 0.2211 (0.59) 0.1603 (0.74) 0.1855 (0.99) 0.1758 (0.45)

Heating oil 0.2132 0.2085 (0.58) 0.1895 (0.85) 0.1549 (0.91) 0.2172 (0.38) 0.2166 (0.40) 0.1841 (0.84)

Natural gas 0.7132 0.7743 (0.05) 0.7559 (0.17) 0.6564 (0.81) 0.7749 (0.04) 0.7224 (0.20) 0.7269 (0.30)

Unleaded gas 0.0445 0.1197 (0.13) 0.1129 (0.19) 0.0026 (0.69) 0.1201 (0.14) 0.0459 (0.46) 0.0977 (0.09)

Panel C: Livestock

Feeder cattle ‐0.0129 ‐0.0178 (0.48) ‐0.0810 (0.96) ‐0.0953 (0.94) ‐0.0159 (0.45) ‐0.0078 (0.32) ‐0.3550 (0.92)

Lean hogs 0.0415 0.0443 (0.36) 0.0575 (0.32) 0.0504 (0.46) 0.0437 (0.39) 0.0516 (0.18) 0.0400 (0.71)

Live cattle 0.0137 ‐0.0091 (0.99) ‐0.0762 (1.00) ‐0.0711 (0.95) ‐0.0131 (1.00) 0.0237 (0.14) ‐0.0891 (0.85)

Panel D: Metal and Lumber

Copper 0.0740 0.0599 (0.76) 0.0386 (0.85) ‐0.0173 (0.88) 0.0738 (0.41) 0.0763 (0.46) ‐0.0971 (0.89)

Gold 0.0002 ‐0.0033 (0.48) ‐0.0219 (0.80) ‐0.0665 (0.86) ‐0.0149 (0.79) ‐0.0075 (0.81) ‐0.5253 (0.93)

Lumber 0.0752 0.0631 (0.80) 0.0527 (0.93) 0.0662 (0.62) 0.0586 (0.89) 0.0840 (0.13) 0.0629 (0.80)

Palladium 0.0961 0.1058 (0.27) 0.1127 (0.31) 0.0483 (0.75) 0.1096 (0.24) 0.1034 (0.88) 0.0480 (0.89)

Platinum 0.1029 0.0783 (0.94) 0.0373 (0.98) ‐0.0044 (0.96) 0.0842 (0.85) 0.0958 (0.74) ‐0.0451 (0.89)

Silver 0.1752 0.1614 (0.94) 0.1122 (0.99) 0.0643 (0.99) 0.1556 (0.97) 0.1734 (0.55) ‐0.0148 (0.93)

Panel E: All commodities

Before TC 0.1627 0.1573 0.1331 0.0922 0.1572 0.1661 0.0728

After TC 0.1622 0.1564 0.1227 0.0760 0.1553 0.1629 0.0677

MinVar

HistAve AR VAR EWC

Selective hedges

K‐Integr RF
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Table 4.  Statistical forecast accuracy.  

The table reports the OOS-R² statistic that gives the reduction in out-of-sample mean squared error 
of the futures return forecast used in each selective hedge versus the zero-return (no predictability) 
benchmark that underlies the MinVar hedge. A negative or zero  OOS-R² suggest that the futures 
return forecast at hand is less or as accurate as the zero-return forecast. p-values of the Diebold 
and Mariano (1995) test are shown in parentheses.  The sample periods are as detailed in Table 2.  

 

  

Panel A: Agriculture

Cocoa ‐0.32% (0.955) ‐0.52% (0.982) ‐1.32% (0.996) ‐0.46% (0.981) 0.05% (0.368) ‐0.87% (0.793)

Coffee ‐0.34% (0.971) ‐1.14% (0.989) ‐1.66% (0.974) ‐0.25% (0.906) 0.16% (0.113) ‐0.69% (0.840)

Corn ‐0.31% (0.897) ‐0.72% (0.889) ‐0.93% (0.893) ‐0.38% (0.909) ‐0.01% (0.538) 0.72% (0.247)

Cotton ‐0.45% (0.934) ‐0.85% (0.985) ‐2.07% (1.000) ‐0.46% (0.889) 0.03% (0.423) ‐0.53% (0.687)

Frozen orange juice ‐0.32% (0.992) ‐0.66% (0.909) ‐1.76% (0.977) ‐0.35% (0.970) ‐0.09% (0.808) ‐0.23% (0.654)

Soybeans ‐0.06% (0.569) ‐0.35% (0.736) ‐0.97% (0.886) ‐0.13% (0.626) 0.13% (0.152) ‐0.35% (0.590)

Soybeans meal  0.06% (0.460) ‐0.73% (0.810) ‐2.13% (0.979) 0.08% (0.449) 0.17% (0.118) ‐0.89% (0.756)

Soybeans oil  ‐0.24% (0.913) ‐0.48% (0.944) ‐0.36% (0.747) ‐0.32% (0.923) 0.08% (0.257) 0.11% (0.469)

Sugar ‐0.23% (0.850) ‐0.54% (0.910) ‐0.81% (0.949) ‐0.24% (0.850) 0.20% (0.100) ‐0.70% (0.835)

Wheat ‐0.20% (0.761) ‐0.66% (0.917) ‐1.22% (0.968) ‐0.17% (0.716) ‐0.04% (0.627) ‐0.50% (0.722)

Panel B: Energy

Crude oil ‐0.30% (0.721) ‐0.76% (0.848) ‐2.52% (0.990) 0.08% (0.431) 0.07% (0.306) 0.70% (0.276)

Gasoline RBOB ‐0.53% (0.711) 2.61% (0.053) ‐1.22% (0.620) ‐0.88% (0.786) ‐1.04% (0.704) 0.09% (0.458)

Heating oil ‐0.29% (0.712) ‐0.56% (0.766) ‐1.26% (0.925) 0.04% (0.463) 0.12% (0.197) 0.71% (0.278)

Natural gas 0.45% (0.204) 0.08% (0.451) ‐1.95% (0.950) 0.63% (0.137) 0.09% (0.257) 0.62% (0.105)

Unleaded gas 0.88% (0.274) 0.50% (0.393) ‐0.93% (0.669) 0.92% (0.273) 0.02% (0.471) 0.70% (0.064)

Panel C: Livestock

Feeder cattle ‐0.19% (0.643) ‐0.49% (0.663) ‐1.02% (0.798) ‐0.15% (0.612) 0.11% (0.260) ‐2.37% (0.879)

Lean hogs 0.00% (0.501) 0.21% (0.325) ‐0.47% (0.785) 0.05% (0.454) 0.24% (0.176) 0.50% (0.306)

Live cattle ‐0.36% (0.886) ‐0.98% (0.895) ‐0.76% (0.840) ‐0.35% (0.860) 0.24% (0.031) ‐0.76% (0.756)

Panel D: Metal

Copper ‐0.32% (0.724) ‐0.68% (0.875) ‐0.69% (0.821) ‐0.10% (0.569) 0.08% (0.261) ‐0.20% (0.539)

Gold ‐0.12% (0.586) ‐0.39% (0.739) ‐1.42% (0.981) ‐0.28% (0.691) ‐0.21% (0.951) ‐3.53% (0.959)

Lumber ‐0.16% (0.635) ‐0.37% (0.776) ‐0.09% (0.567) ‐0.17% (0.642) 0.16% (0.112) 0.31% (0.312)

Palladium 0.00% (0.506) 0.08% (0.399) ‐1.58% (0.987) 0.06% (0.431) 0.20% (0.192) ‐1.03% (0.911)

Platinum ‐0.23% (0.631) ‐0.79% (0.796) ‐1.81% (0.964) ‐0.16% (0.602) ‐0.13% (0.719) ‐1.04% (0.732)

Silver ‐0.27% (0.774) ‐0.82% (0.955) ‐1.30% (0.971) ‐0.36% (0.830) ‐0.06% (0.676) ‐1.09% (0.890)

RFHistAve VAR EWC K‐IntegrAR
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Table 5.  Abnormal return of the selective hedges.  

The table reports the abnormal return of selective hedging measured as the (annualized) intercept 
or alpha of a spanning regression of the selective hedge portfolio returns on the returns of the 
MinVar hedge portfolio. Significance Newey-West t-statistics are shown in parentheses (using 
Andrews and Monohan, 1992, to determine the lag selection parameter). The sample periods are 
as detailed in Table 2.  

 

 

  

Panel A: Agriculture

Cocoa ‐0.0108 (‐1.34) ‐0.0173 (‐1.57) ‐0.0292 (‐1.37) ‐0.0160 (‐1.71) 0.0028 (0.48) 0.0044 (0.11)

Coffee ‐0.0127 (‐1.59) ‐0.0374 (‐1.63) ‐0.0164 (‐0.40) ‐0.0092 (‐1.00) 0.0079 (1.33) 0.0001 (0.00)

Corn ‐0.0110 (‐0.69) ‐0.0107 (‐0.26) ‐0.0040 (‐0.08) ‐0.0119 (‐0.67) 0.0051 (0.68) 0.1068 (1.45)

Cotton ‐0.0110 (‐0.68) ‐0.0294 (‐1.35) ‐0.0710 (‐2.23) ‐0.0086 (‐0.42) 0.0050 (0.55) 0.0252 (0.43)

Frozen orange juice ‐0.0145 (‐1.63) ‐0.0108 (‐0.32) ‐0.0158 (‐0.28) ‐0.0139 (‐1.05) ‐0.0044 (‐0.70) 0.0297 (0.68)

Soybeans 0.0134 (0.78) 0.0144 (0.54) 0.0226 (0.61) 0.0124 (0.64) 0.0067 (1.04) 0.0470 (0.68)

Soybeans meal  0.0377 (1.26) 0.0080 (0.19) ‐0.0021 (‐0.04) 0.0394 (1.25) 0.0081 (1.07) 0.0003 (0.01)

Soybeans oil  ‐0.0090 (‐1.07) ‐0.0193 (‐1.25) 0.0006 (0.02) ‐0.0123 (‐1.08) 0.0053 (0.88) 0.0700 (1.04)

Sugar ‐0.0070 (‐0.65) ‐0.0159 (‐0.79) ‐0.0212 (‐0.86) ‐0.0060 (‐0.54) 0.0122 (1.65) 0.0058 (0.18)

Wheat ‐0.0062 (‐0.35) ‐0.0186 (‐0.62) ‐0.0237 (‐0.60) ‐0.0023 (‐0.12) ‐0.0022 (‐0.29) 0.0251 (0.42)

Panel B: Energy

Crude oil ‐0.0065 (‐0.25) ‐0.0080 (‐0.22) ‐0.0557 (‐1.26) 0.0224 (0.90) 0.0058 (0.85) 0.0963 (1.42)

Gasoline RBOB ‐0.0062 (‐0.31) 0.0749 (1.90) 0.1744 (1.43) ‐0.0092 (‐0.38) 0.0073 (0.23) 0.0029 (0.16)

Heating oil 0.0074 (0.36) 0.0104 (0.33) ‐0.0083 (‐0.21) 0.0182 (0.95) 0.0049 (0.75) 0.0524 (1.03)

Natural gas 0.0715 (2.56) 0.0610 (2.02) 0.0165 (0.38) 0.0769 (2.75) 0.0069 (1.17) 0.0418 (1.88)

Unleaded gas 0.0939 (1.07) 0.0934 (0.89) 0.0313 (0.26) 0.1013 (1.11) 0.0022 (0.16) 0.0446 (1.62)

Panel C: Livestock

Feeder cattle 0.0121 (0.42) 0.0358 (0.55) 0.0216 (0.31) 0.0147 (0.50) 0.0084 (0.84) 0.0941 (0.85)

Lean hogs 0.0074 (0.49) 0.0271 (1.27) 0.0345 (1.36) 0.0134 (0.66) 0.0128 (1.24) 0.0926 (1.73)

Live cattle ‐0.0085 (‐0.54) ‐0.0212 (‐0.50) 0.0276 (0.65) ‐0.0081 (‐0.46) 0.0140 (1.98) 0.0959 (1.29)

Panel D: Metal

Copper 0.0100 (0.36) ‐0.0045 (‐0.15) 0.0194 (0.40) 0.0263 (0.87) 0.0037 (0.62) 0.0535 (0.49)

Gold 0.0259 (1.03) 0.0195 (0.66) 0.0061 (0.17) 0.0200 (0.74) ‐0.0055 (‐0.86) ‐0.0350 (‐0.40)

Lumber 0.0165 (0.70) 0.0094 (0.38) 0.0270 (0.94) 0.0162 (0.67) 0.0106 (1.54) 0.0522 (1.31)

Palladium 0.0147 (1.14) 0.0246 (1.55) ‐0.0090 (‐0.32) 0.0224 (1.44) 0.0100 (1.13) ‐0.0106 (‐0.43)

Platinum 0.0192 (0.58) 0.0096 (0.22) ‐0.0229 (‐0.50) 0.0236 (0.73) ‐0.0025 (‐0.23) 0.0239 (0.31)

Silver 0.0007 (0.04) ‐0.0336 (‐1.16) ‐0.0312 (‐0.75) ‐0.0021 (‐0.10) 0.0004 (0.05) ‐0.0144 (‐0.27)

RFK‐IntegrHistAve AR VAR EWC
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Table 6.  Risk reduction ability of the hedges.  

The table reports the annualized variance of the traditional MinVar and selective hedge portfolios. 
The p-values of the Diebold and Mariano (1995) test for 𝐻:𝐸ൣሺ∆𝑝௧

ௌுሻଶ െ ሺ∆𝑝௧
ெሻଶ൧  0 

versus 𝐻ଵ:𝐸ൣሺ∆𝑝௧
ௌுሻଶ െ ሺ∆𝑝௧

ெሻଶ൧  0 are shown in parentheses. The sample periods are as 
detailed in Table 2.  

 

 

  

MinVar

Panel A: Agriculture

Cocoa 0.0230 0.0225 (0.84) 0.0230 (0.45) 0.0273 (0.00) 0.0236 (0.16) 0.0236 (0.00) 0.0402 (0.01)

Coffee 0.0344 0.0375 (0.00) 0.0443 (0.00) 0.0605 (0.00) 0.0377 (0.00) 0.0351 (0.02) 0.0490 (0.02)

Corn 0.0116 0.0150 (0.00) 0.0300 (0.00) 0.0427 (0.00) 0.0169 (0.00) 0.0120 (0.04) 0.0699 (0.03)

Cotton 0.0106 0.0125 (0.00) 0.0188 (0.05) 0.0289 (0.00) 0.0140 (0.01) 0.0115 (0.05) 0.0424 (0.01)

Frozen orange juice 0.0068 0.0077 (0.00) 0.0253 (0.01) 0.0591 (0.00) 0.0098 (0.00) 0.0075 (0.00) 0.0371 (0.01)

Soybeans 0.0076 0.0139 (0.00) 0.0245 (0.00) 0.0445 (0.00) 0.0154 (0.00) 0.0083 (0.00) 0.0725 (0.02)

Soybeans meal  0.0221 0.0378 (0.00) 0.0560 (0.02) 0.0811 (0.00) 0.0393 (0.00) 0.0227 (0.03) 0.0663 (0.02)

Soybeans oil  0.0032 0.0049 (0.00) 0.0067 (0.00) 0.0157 (0.00) 0.0069 (0.00) 0.0039 (0.00) 0.0665 (0.03)

Sugar 0.0166 0.0183 (0.00) 0.0233 (0.00) 0.0276 (0.00) 0.0187 (0.00) 0.0176 (0.00) 0.0371 (0.03)

Wheat 0.0442 0.0518 (0.00) 0.0570 (0.00) 0.0655 (0.00) 0.0524 (0.00) 0.0452 (0.04) 0.0839 (0.00)

Panel B: Energy

Crude oil 0.0167 0.0300 (0.00) 0.0367 (0.00) 0.0495 (0.00) 0.0270 (0.00) 0.0168 (0.35) 0.0482 (0.02)

Gasoline RBOB 0.0281 0.0298 (0.01) 0.0311 (0.02) 0.0785 (0.09) 0.0304 (0.02) 0.0292 (0.22) 0.0292 (0.05)

Heating oil 0.0110 0.0143 (0.00) 0.0230 (0.00) 0.0293 (0.00) 0.0158 (0.00) 0.0115 (0.00) 0.0457 (0.01)

Natural gas 0.3031 0.3052 (0.41) 0.3085 (0.31) 0.3314 (0.00) 0.3075 (0.30) 0.3019 (0.85) 0.3146 (0.01)

Unleaded gas 0.0438 0.0582 (0.01) 0.0645 (0.00) 0.0795 (0.00) 0.0609 (0.00) 0.0443 (0.26) 0.0430 (0.68)

Panel C: Livestock

Feeder cattle 0.0337 0.0400 (0.00) 0.0746 (0.00) 0.0747 (0.00) 0.0404 (0.00) 0.0350 (0.04) 0.2095 (0.01)

Lean hogs 0.0661 0.0679 (0.03) 0.0706 (0.00) 0.0762 (0.00) 0.0706 (0.00) 0.0672 (0.06) 0.1043 (0.02)

Live cattle 0.0228 0.0286 (0.00) 0.0501 (0.02) 0.0674 (0.00) 0.0305 (0.00) 0.0244 (0.00) 0.1023 (0.01)

Panel D: Metal

Copper 0.0024 0.0119 (0.00) 0.0147 (0.00) 0.0478 (0.02) 0.0142 (0.00) 0.0030 (0.00) 0.0935 (0.01)

Gold 0.0009 0.0130 (0.00) 0.0177 (0.00) 0.0309 (0.00) 0.0151 (0.00) 0.0017 (0.00) 0.1958 (0.03)

Lumber 0.0854 0.0970 (0.00) 0.0984 (0.00) 0.0999 (0.00) 0.0988 (0.00) 0.0861 (0.07) 0.1113 (0.02)

Palladium 0.0076 0.0096 (0.00) 0.0108 (0.00) 0.0232 (0.00) 0.0109 (0.00) 0.0086 (0.01) 0.0225 (0.02)

Platinum 0.0039 0.0218 (0.00) 0.0344 (0.00) 0.0380 (0.00) 0.0211 (0.00) 0.0058 (0.00) 0.0725 (0.03)

Silver 0.0032 0.0088 (0.00) 0.0152 (0.00) 0.0347 (0.00) 0.0097 (0.00) 0.0039 (0.00) 0.0719 (0.02)

RF

Selective hedges

K‐IntegrHistAve AR VAR EWC
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Table 7. Alternative specifications of the traditional hedge ratios. 

The table reports the annualized expected utility gain of various traditional hedges and their 
selective hedge counterparts. The traditional hedges are defined through the OLS regression model 
(referred to in the rest of the paper as MinVar hedge ratio), the naïve one-to-one ratio, VAR(1,1), 
VEC(1,1), bivariate BEKK-GARCH(1,1), DCC-GARCH(1,1) and Markov regime-switching OLS 
regression model. The reported statistics are averages across commodities.  

 

 

  

HistAve AR VAR EWC K‐Integr RF

MinVar 0.1627 0.1573 0.1331 0.0922 0.1572 0.1661 0.0728

One‐to‐One 0.1597 0.1485 0.1249 0.0845 0.1481 0.1628 0.0626

VAR(1,1) 0.1628 0.1576 0.1335 0.0944 0.1575 0.1662 0.0725

VEC(1,1)  0.1627 0.1576 0.1335 0.0944 0.1575 0.1661 0.0724

BEKK‐GARCH(1,1)   0.1710 0.1654 0.1503 0.1176 0.1646 0.1744 0.0769

DCC‐GARCH(1,1)   0.1701 0.1584 0.1433 0.1048 0.1580 0.1730 0.0775

Regime Switching‐OLS 0.1541 0.1488 0.1248 0.0854 0.1490 0.1575 0.0660

Average 0.1633 0.1562 0.1348 0.0962 0.1560 0.1666 0.0715

Traditional 

hedge

Selective hedges
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Table 8. Alternative specifications of the selective hedge ratios. 

The table reports the annualized expected utility gains obtained from alternative specifications of 
the EWC (Panel A), K-Integr (Panel B), RF (Panel C) and miscellaneous (Panel D) selective 
hedging strategies. The first column of Panels A to C pertain to the baseline setting of Table 3. 
‘K=10’, and ‘K=3’ refer to the 10 commodity-specific predictors and to 3 commodity predictors 
(roll-yield, momentum and value), respectively. In Panel A, MSE and E-Net combine the 
predictions from univariate regressions using either the inverse of the mean squared errors or elastic 
net weights as detailed in Appendix B. PC1 (PC1-2) use the first (two first) principal component(s) 
of the full set of information variables as predictors. In Panel B, K-Integr E-net includes an elastic-
net penalty for overfitting as detailed in Appendix C, 𝜍 is the tracking error threshold, Pooled K-
Integr stacks together all the commodities and predictors before optimizing the weights. In Panel 
C, DNN stands for deep neural network with the number of hidden layers mentioned thereafter, 
LSTM stands for long-short term memory network with the number of LSTM units mentioned 
thereafter. In Panel D, Comb combines the predictions of all the six selective hedging models of 
Table 3, CS relies on Fama-MacBeth cross sectional forecasts. Naïve Basis uses the roll-yield at 
time t as futures return forecast. The expected utility gains are averaged across commodities.  

 

  

Panel A: EWC and its variants

Baseline K=10 K=3 MSE E‐Net PC1 PC1‐2

0.1572 0.1534 0.1430 0.1568 0.1328 0.0993 0.0785

Panel B: K‐Integr and its variants

Baseline K=10 K=3 E‐Net ς = 5% ς = 10% Pooled

0.1661 0.1608 0.1608 0.1643 0.1658 0.1351 0.1663

Panel C: Machine learning variants

Baseline K=10 K=3 DNN2 DNN3 LSTM4‐DNN2 LSTM4‐DNN3 LSTM8‐DNN2 LSTM8‐DNN3

0.0728 0.1529 0.1388 0.0231 0.1039 0.1436 0.1107 0.1508 0.1326

Panel D: Miscellaneous models

Comb CS (K=10) CS (K=3) Naive Basis

0.1630 0.1335 0.1456 0.0465
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Table 9. Subsample analysis. 

The table reports the annualized expected utility gains of the various hedging strategies over 
different subsample periods such as pre and post the financialization of commodities using the 
January 2006 date suggested by Stoll and Whaley (2010), during backwardation and contango 
periods,  during NBER expansions and recessions, during periods of high versus low commodity 
market volatility (defined according to a GARCH model fitted to weekly spot returns), and high 
versus low macro volatility (relative to the macroeconomic uncertainty index of Jurado et al., 
2015). The expected utility gains reported are averages across commodities. They are calculated 
using returns that are contemporaneous to the subsamples. The sample splits are determined ex-
post based on the full sample series. 
 

 

 

MinVar

HistAve AR VAR EWC K‐Integr RF

Financialization

Pre 0.0825 0.0958 0.0494 0.0328 0.0898 0.0878 0.1088

Post 0.1922 0.1797 0.1528 0.1116 0.1807 0.1948 0.0758

Backwardation and contango phases

Backwardation ‐0.0085 0.0024 ‐0.0229 ‐0.1303 0.0009 ‐0.0069 ‐0.0909

Contango 0.2473 0.2276 0.2139 0.1858 0.2284 0.2502 0.1539

NBER business cycle

Expansion 0.1311 0.1310 0.1113 0.0801 0.1297 0.1342 0.1276

Recession 0.4808 0.4206 0.3469 0.2118 0.4322 0.4878 ‐0.4446

Spot volatility

Low 0.0748 0.0826 0.0794 0.0545 0.0841 0.0767 0.0638

High 0.2506 0.2320 0.1869 0.1296 0.2303 0.2554 0.0818

Macro uncertainty index

Low  0.0829 0.0893 0.0655 0.0328 0.0895 0.0901 0.0866

High 0.2346 0.2229 0.2140 0.1603 0.2227 0.2380 0.0792

Selective hedges
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Table 10. Risk aversion, estimation window, rebalancing, maturities and long hedging. 

The table presents the annualized expected utility gains of various hedging strategies obtained 
when allowing for time-variation in the hedger’s risk aversion, from expanding windows, with 
monthly or quarterly rebalancing, for different futures maturities ranging from the second (F2) to 
the sixth (F6) contract along the curve, and for a long hedger. The first row recalls the baseline 
results of Table 3. Unless otherwise stated, the utility function is mean-variance with coefficient of 
relative risk aversion 𝛾 ൌ 5. The expected utility gains reported are averages across commodities.  

 

 

MinVar

HistAve AR VAR EWC K‐Integr RF

Baseline 0.1627 0.1573 0.1331 0.0922 0.1572 0.1661 0.0728

Time‐varying risk aversion 0.0941 0.0858 0.0470 ‐0.0171 0.0854 0.0983 0.0601

Expanding windows 0.1609 0.1617 0.1321 0.1113 0.1593 0.1632 0.0471

Monthly rebalancing 0.1984 0.1869 0.1708 0.1124 0.1840 0.1819 0.1093

Quarterly rebalancing  0.1975 0.1985 0.1973 0.1668 0.1982 0.1887 0.1604

Maturity F2 0.1573 0.1520 0.1303 0.0920 0.1525 0.1603 0.0205

F3 0.1484 0.1427 0.1218 0.0913 0.1440 0.1514 ‐0.0087

F4 0.1260 0.1236 0.1058 0.0705 0.1260 0.1289 0.0493

F5 0.1334 0.1289 0.1046 0.0609 0.1318 0.1361 ‐0.1381

F6 0.1223 0.1242 0.1026 0.0712 0.1253 0.1258 ‐0.0395

Long hedging 0.1172 0.1088 0.0839 0.0409 0.1085 0.1197 0.0215

Selective hedges


