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Abstract

We use a dynamic moral hazard model in which a firm’s owner delegates the corporate tax
strategy to an agent in an institutional setting with random inspections by tax officers. The
principal cannot observe either the underlying gross profits or the agent’s efforts to reduce tax
expenses. The inspection date is random and might not occur. Upon inspection, illegal strategies
are detected and penalized, but the authorities cannot observe how much as been evaded. The
optimal dynamic contract consists of a terminal compensation and a tax reduction strategy.
We find that even in contexts without inspections, a risk-aversed owner will not contract tax
strategies if the agent’s effort costs or the gross profit volatility are too high to compensate for her
risk aversion. For contexts with inspections, the optimal compensation includes an additional risk
premium for bearing the inspection risk and a lump-sum loss contingent on an inspection. The
optimal tax strategy becomes less aggressive over time as the expected penalty increases. The
dynamic nature of the model allows for quantitative evaluations. Using calibrated parameters
from corporate taxation in the U.S., the model indicates that the agent’s compensation for
implementing the tax strategy corresponds to 37.8% percent of the expected benefits derived
from the tax strategy.
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1 Introduction

A large body of research on tax planning has documented that corporations pursue various tax-

reduction strategies, ranging from benign tax-advantaged investments to aggressive illegal activities.

Managers in charge of designing and implementing such strategies will likely trade off the benefit

of the additional compensation for this effort with the potential personal economic costs. While

some high-profile cases show managers following an active tax minimization strategy, it is puzzling

that this phenomenon is not more prevalent given the limited cost of requesting legal tax reductions

and the low probability of detecting tax evasion (Weisbach, 2002; Desai and Dharmapala, 2006).

We study the extent and intensity of corporate tax strategies from a dynamic contract theory

perspective. In particular, we aim to address the following questions: (1) Why would a firm’s owner

choose not to contract a tax reduction strategy? (2) How does the optimal contract incentivize the

manager to avoid taxes across time? (3) How large is the manager’s compensation in comparison to

the tax reductions?

Our model considers an agent (manager) hired by the principal (firm’s owner) to continuously

implement a tax strategy for reducing tax expenses over the gross profits generated by a finite-time

project. Given that the agent has superior information on the realized gross profits and feasible

tax strategies, the principal cannot monitor the agent’s effort to reduce tax obligations. The tax

strategy splits the gross profit into two components, leaving one untaxed. The untaxed profits are

paid back to the principal net of payments to third parties needed to implement the tax strategy

(i.e., external legal advisors). The agent incurs private quadratic effort costs for implementing this

strategy, reflecting the increasing difficulty of legally reducing gross income or concealing larger

tax evasions. The tax authority conducts a random inspection during the project. The inspection

only reveals tax reductions at the time of the audit. The inspection does not alter the legal tax

strategies. However, in the case of detecting illegal strategies (i.e., tax evasion), it triggers an

economic sanction, and taxes cannot be reduced for the rest of the project. The timing of inspections

follows an exponential distribution, making the occurrence unpredictable but quantifiable. The

agent is compensated at the end of the project after reporting the net profits to the principal.

We start by addressing the optimal dynamic contract in a baseline scenario without tax

authority inspections, where the agent’s superior information on gross profits and potential tax
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deductions creates a moral hazard problem. This scenario can be interpreted as companies engaging

in lawful tax practices with the confidence that they will not be questioned by tax authorities. It

can also be seen as situations with ineffective or corrupt authorities where the lack of inspection

threat does not discourage illegal behavior. We analyze the initial conditions under which the owner

optimally decides to forgo the benefits of tax reduction strategies, something commonly known as

the under-sheltering puzzle (Weisbach, 2002). The marginal benefit of avoiding one dollar must

compensate for the marginal tax savings plus an additional factor that increases with the marginal

effort costs and the principal’s risk premium. Therefore, a risk-aversed principal will not engage in

feasible tax avoidance if the managerial effort costs or the volatility of the gross profits is too high.

Additionally, while the agent’s risk aversion does not affect this initial condition, it influences tax

strayegy aggressivity. Specifically, delegating tax strategies to a more risk-averse agent diminishes

the optimal tax expense reduction.

Next, we focus on scenarios with inspection risk. In our setting, inspections detect illegal tax

strategies with certainty. However, the tax authority is unable to trace back the strategy. When a

tax crime is detected, the penalty is calculated as the amount of tax evasion detected on the date

of inspection multiplied by the length of the contract. We allow this sanction to vary based on a

penalty factor. A lower penalty factor reduces the payment to reflect favorable legal settlements

in tax disputes, while a large factor can be interpreted as including additional civil and criminal

penalties for tax crimes. Compared to the baseline case, the optimal compensation grows linearly

faster to account for the risk premium paid for bearing inspection risk. Additionally, this optimal

contract includes a lump-sum loss for the agent contingent on the occurrence of an inspection. The

optimal illegal tax strategy is gradually less aggressive over time as the expected penalty increases.

We then analyze two characteristics of the optimal contract: its enforceability and sensibility

to different penalty structures. First, Chen and Chu (2005) argue that contracts based on illegal

clauses, such as those for contracting tax evasion, are not legally enforceable in court. Therefore, the

principal can renege on the contract and refuse to compensate the agent. The agent would refuse

the agreement because she knows no court would uphold an illegal contract. This intuition stands in

contrast with the widespread practice of tax evasion, even in countries with strict tax enforcement

(Slemrod, 2007), and with the evidence of the enduring contractual relationships between large

firms and tax consulting companies (ICIJ, 2023; Reuters, 2019). We use our model to establish the
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theoretical possibility of illegal tax arrangements being self-enforced based on the repetitive nature

of tax strategy over successive periods. This repetition fosters a mechanism where the expectation

of future interactions provides a basis for compliance beyond legal constraints. Second, we explore

the implications of an alternative penalty structure where the agent, instead of the principal, is

penalized in case of detecting tax evasion. Crocker and Slemrod (2005) argue that penalties imposed

directly on the agent are more effective in curbing tax evasion than those imposed on shareholders.

In our setting, the aggressiveness of the tax strategy is unaffected by who carries the penalty to the

extent that both the agent and the principal have the same level of risk aversion.

Finally, we rely on the dynamic nature of our model to calibrate some unobservable parameters.

In particular, we calibrate the agent’s effort cost and the penalty factor to match a set of moments

related to corporate tax revenues, penalties, and the fraction of taxes that are expected but not

collected from the Internal Revenue Service (IRS). Our analysis suggests that the agent’s expected

compensation corresponds to 37.8% percent of the expected benefits derived from tax strategies.

This fraction largely increases with the tax rates, reflecting the value of the tax strategy for

the principal. However, this fraction decreases in tight tax regulatory environments (e.g., higher

inspection probability and larger penalties) as these institutional features reduce the principal’s

benefits from the tax strategy and, thus, are detrimental to optimal compensation.

This paper makes several contributions to the literature on corporate tax strategy and

governance. First, we connect with seminal studies using static contract theory to analyze optimal

tax avoidance contracts (Chen and Chu, 2005; Crocker and Slemrod, 2005). We build on this

literature by developing a dynamic contracting model with random inspection risk. We use this

model to explain conditions under which the principal refrains from pursuing tax strategies and

to describe the dynamics of optimal compensation and tax aggressiveness. Additionally, we study

how illegal clauses can be self-enforced in a dynamic game and that the effectiveness of the

penalty structure depends on the relative risk aversion of the agent and the principal. Second, a

large amount of empirical evidence suggests that corporate tax strategy benefits shareholders and

managers (Desai et al., 2007; Bennedsen and Zeume, 2018). More recently, business commentators

have highlighted how companies reward managers for pursuing tax avoidance, often resulting in

executives’ compensation exceeding corporate tax expenses (The Guardian, 2024; Anderson et al.,

2024). In line with this discussion, our calibration analysis suggests that a relevant fraction of the
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gains derived from the tax strategy is paid to the manager. Lastly, from a methodological perspective,

we build on the work of Martin and Villeneuve (2023) by integrating a random exogenous shock into

a principal-agent model with moral hazard where a Brownian component drives the firm’s output.

2 Model

In this section, we develop a moral hazard model for delegating tax strategy in a setting with a

random inspection by the tax authority. Our model embeds the inspections as exogenous shocks

(Martin and Villeneuve, 2023) into a classic dynamic moral hazard framework (Holmstrom and

Milgrom, 1987).

Time is continuous between [0, T ] with T > 0, and the firm can be considered as a project

with terminal date T . The firm’s owner (hereafter, the principal) delegates to an agent (i.e., the

manager) the management of the firm’s tax strategy. Both the principal and the agent have CARA

utility functions on terminal wealth

UP (x) := − exp(−γP x) and UA(x) := − exp(−γAx),

with absolute risk aversion parameters γP > 0 and γA > 0.

We depart from the canonical model of Holmstrom and Milgrom (1987) by introducing two

novel features: First, we introduce tax evasion incentives. The agent’s action strategically splits

gross profits into two parts, deducting one from tax obligations. Second, we incorporate a random

inspection process imposed by tax authorities that can trigger economic penalties when tax evasion

is detected.

2.1 Tax strategy

We define the complete probability space as
(
Ω, G,P0) (for a detailed definition, see Appendix A).

Firm’s gross profits, denoted by I = (It)t≤T , evolve exogenously according to the following dynamics:

dIt = µdt + σdBt, (1)

IT = I0 +
∫ T

0
µdt +

∫ T

0
σdBt (2)
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where B represents a standard one-dimensional Brownian motion.1 This Brownian motion is defined

on the filtration F = (Ft)t≥0.

At the initial time t = 0, the principal decides whether to contract the agent to perform a tax

strategy, which involves a series of actions executed continuously over time to reduce tax expenses,

represented as a = (at)t≤T . The tax strategy can be legal, involving lawful methods to reduce tax

expenses, or illegal, involving tax evasion tactics. We define the set of feasible tax strategies as:

A = {{at}T
t=0 : at is F − predictable and at ∈ [0, ā] for ā > 0}. (3)

The agent incurs a quadratic effort cost for implementing the tax strategy c(at) = c
2a2

t ≥ 0 at

any date t ∈ [0, T ]. This cost reflects the difficulties the agent must overcome to reduce taxable

profits. As the tax code options become limited, it becomes progressively harder for managers to

increase the amount of tax reductions through legal means. Similarly, as the magnitude of tax

evasion that needs to be hidden increases, managers have to put in more effort to conceal it.

2.2 Tax authority and random inspections

We assume the distribution of the tax authority’s inspections across time is exogenous and construct

the single-jump process N as follows:2

Nt =


0 if no inspection has occurred by time t

1 if an inspection has occurred by time t

We assume this single-jump process has an intensity λ. Hence, given that no inspection

has occurred before date t, the probability that an inspection will occur between t and t + dt is

λdt. Furthermore, the probability that a firm is inspected at time θ before terminal date T is
1For tractability, we assume that gross profits are unaffected by the tax strategy. In reality, tax strategies can

influence investment decisions and have a heterogeneous impact across firms based on productivity and intangibles
(Jacob 2022; Ortiz and Imbet 2023).

2Formally, the possibility of multiple audits in the same company could be represented by a Poisson process,
reflecting the stochastic nature of audit occurrences. However, since any audit invariably detects illegal activities when
they occur, only the first audit is relevant to our model. Therefore, we simplify the representation by considering only
the first jump of the Poisson process. This reduction to a single-jump process is justified because subsequent audits
become redundant once illegal activity is detected and stopped.
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P(0 ≤ θ ≤ T ) = 1 − exp(−λT ). Given the process N , we can create the following process M :

Mt = Nt − λ

∫ t

0
(1 − Ns)dt (4)

which is a G-compensated martingale, where G = {Gt, t ≥ 0} is the smallest complete right-

continuous extension of F that makes θ a stopping time. Hence, G encompasses all pertinent

information: this includes the history of the gross profits, encapsulated within the set F = (Ft)t≥0,

and knowledge regarding the occurrence of an inspection.

When a firm pursuing tax evasion is inspected, we assume three consequences. First, the

evasion is invariably detected. Second, following the inspection, the company continues operating

until T but cannot continue any tax strategy for the remaining duration of the project. Third, the

tax authority imposes an economic penalty on the firm.

2.3 Taxable and total profits

The firm reports taxable profits Ia = (Ia
t )t≤T , which depend on a tax strategy a = (at)t≤T . These

reported profits evolve as:

dIa
t = (µ − at(1 − Nt))dt + σdBa

t , (5)

where Ba is a Brownian motion under the probability measure Pa equivalent to P0, formally defined

in Appendix A. The deterministic component of the gross profit increases with the expected earnings

µ and decreases with tax avoidance at. Moreover, σ is a positive constant that denotes the firm’s

gross profits volatility. A fraction 1 − δ of the savings from the tax strategy is paid to intermediaries.

In legal cases, these expenses are driven by the fees of consultants and financial services. In illegal

cases, the evaded taxes need to be legitimized before their use, meaning that a fraction of the

concealed profits is paid to intermediaries to hide the illegal nature of the money (e.g., money

laundering). The total net profits denoted as Xa = (Xa
t )t≤T , represent the after-tax reported

earnings combined with the tax savings net of intermediaries’ fees. The change in total net profits
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at time t follows:

dXa
t = (1 − τ)dIa

t + δat(1 − Nt)dt

=
(
(1 − τ)µ + (δ + τ − 1)at(1 − Nt)

)
dt + (1 − τ)σdBa

t .

(6)

Where τ is the corporate tax rate. The principal will receive the total net profits from the project,

represented by Xa
T , at the final time T . This final lump-sum gain includes the benefits from the

tax strategy a accumulated up to time T . The principal can only continuously monitor Ia and not

Xa, much like the tax authorities. Consequently, the principal only observes the accumulated gains

from the tax strategy when the activity terminates or when an inspection occurs.

2.4 Optimal Contracting Problem

The principal compensates the agent with a terminal payment W contingent on the firm’s accumu-

lated reported profits Ia
t and the advent of an inspection before the date T . The contract (W, a)

comprises a G-measurable wage W that satisfies the usual integrability condition and a tax strategy

plan a. For wage W , the agent maximizes:

sup
a∈A

Ea

[
UA

(
W − c

2

∫ T

0
a2

s(1 − Ns)ds

)]
. (7)

where Ea is the expectation under the measure Pa. An incentive-compatible wage W ensures a tax

strategy a∗(W ) ∈ A that satisfies:

Ea∗(W )
[
UA

(
W − c

2

∫ T

0
a∗

s(W )2(1 − Ns)ds

)]
≥ Ea

[
UA

(
W − c

2

∫ T

0
a2

s(1 − Ns)ds

)]
(8)

To align the agent’s actions with her objectives, the principal offers an incentive-compatible

wage scheme, ensuring the agent’s best response is a∗(W ). We denote the set of best replies to W

by A∗(W ) and the set of incentive-compatible wages as WIC . At time t = 0, the principal faces

a binary decision: to hire the agent to undertake tax strategy throughout the interval [0, T ] or to

abstain from the tax strategy. The primary goal of the principal is to maximize her expected utility.
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This optimization problem can be formally articulated as follows:

sup
{

E0
[
UP

(
X0

T

)]
; sup

W ∈WIC

sup
a∗∈A∗(W )

Ea∗ [
UP

(
Xa∗

T − W − P (θ, a)1θ<T

)]}
, (9)

s.t.

Ea∗
[
UA

(
W − c

2

∫ T

0
a∗(W )2 (1 − Ns) ds

)]
≥ UA (yP C), (10)

where Equation (10) is the participation constraint, yP C is the reservation value of the agent, and

P (θ, a) is the penalty incurred by the firm upon being detected during the inspection at date θ.3 In

this formulation, the term E0 [UP

(
X0

T

)]
represents the expected utility derived from choosing not

to engage in tax strategy. It is quantified as:

E0
[
UP

(
X0

T

)]
= − exp

[
−γP (1 − τ)T

(
µ − γP σ2(1 − τ)

2

)]
. (11)

3 Solution

3.1 No inspection risk

In this section, we focus on cases where the tax authorities do not penalize the firm for its tax

strategy, either because the strategy employs lawful means or because of a weak institutional

environment. Consequently, corporate tax strategies increase the firm’s total profitability, and there

is no threat of penalization.

In this case, moral hazard still arises due to the manager’s exclusive knowledge of the company’s

potential tax deductions and the underlying gross profits. The firm’s total net profits follow the

dynamics:

dXa
t = ((1 − τ)µ + (δ + τ − 1)at)dt + (1 − τ)σdBa

t , (12)

Both the principal and the tax authority can continuously monitor the reported profits Ia

given in Equation (5). In contrast, total net profits Xa are not subject to continuous scrutiny by
3Further details about the penalty structure are provided in Section 3.2.
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any party except the agent, and it is only revealed to the principal at the end of the project or

in case of an inspection. The continuous unobservability of the total net profits generates moral

hazard friction because it prevents the clear distinction between the tax strategy and the stochastic

fluctuations of the firm’s profit arising from the Brownian motion Ba
t .

Here, we derive the optimal contract that consists of a triplet Π∗ = (y∗
0, Z̃∗, a∗). The contract

has three elements: a fixed compensation component (y∗
0), a compensation component sensitive to

reported profits (Z̃∗), and a tax strategy plan (a∗). Let’s denote Jt the agent’s continuation payoff

seen at date t, which is the difference between the compensation W and the cumulative effort costs

from date t to termination date T

Jt := W − c

2

∫ T

t
a2

sds. (13)

We assume that the agent’s continuation payoff is an Itô process and follows the dynamics:

dJt = H̃tdt + Z̃tσdBt. (14)

Next, we consider the total utility of the agent seen at date t that can be expressed as:

VA(t) := UA

(
Jt − c

2

∫ t

0
a2

sds

)
. (15)

We apply Itô’s formula to VA(t), then use the fact that Ba
t = Bt +

∫ t
0

as
σ ds and we get

dVA(t)
VA(t) = γA

[(
−H̃t + γAσ2

2 Z̃2
t + c

a2
t

2 + atZ̃t

)
dt − Z̃tσdBa

t

]
. (16)

Then, the martingale optimality principle provides a yardstick to determine the agent’s ideal strategy.

It implies that {VA(t)T
s=0} is a supermartingale under the probability measure Pa and a martingale

under Pa∗ . Hence,

−H̃t + γAσ2

2 Z̃2
t + c

(a∗
t )2

2 + a∗
t Z̃t = 0 a.s., (17)

only holds when at = a∗
t ∀t ≤ T .
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Because the tax strategy is costly, the principal wants to induce the optimal lowest action,

i.e., equality (17) holds. This leads to:

H̃ = inf
a

{1
2ca2 + aZ̃} + 1

2γAσ2Z̃2. (18)

Using first-order condition, we get

a∗ =



0 when Z̃ > 0,

ā when Z̃ ≤ −āc,

− Z̃
c otherwise.

(19)

Therefore, in the interior case where a∗ = − Z̃
c ,

H̃a∗ = 1
2

(
γAσ2 − 1

c

)
Z̃2, (20)

The agent’s continuation payoff adheres to the dynamics:

dJt = 1
2

(
γAσ2 − 1

c

)
Z̃2

t dt + Z̃tσdBt, (21)

with JT = W. (22)

This equation represents the terminal payment W . The most cost-effective method for ensuring

the agent’s participation is to set J0 = yP C . As a consequence, the dynamics of the terminal

compensation follow:

W = yP C +
∫ T

0

1
2

(
γAσ2 − 1

c

)
Z̃2

t dt +
∫ T

0
Z̃tσdBt. (23)

With the dynamics of W under the optimal contract being defined, our next objective is to

characterize the optimal compensation sensitivity of the Z̃. To achieve this, we turn our attention

to the principal’s problem. The following theorem presents Z̃∗.

Theorem 1. For the case with no inspection risk, in the interior case where a∗ = − Z̃
c , the optimal
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compensation sensitivity Z̃∗ is given by:

Z̃∗ =
γP σ2(1 − τ) − δ+τ−1

c

σ2(γP + γA) + 1
c

. (24)

Proof. See Appendix B.

Hence, the principal will contract the tax strategy if Z̃∗ is negative (i.e., a∗ > 0 in Equation

19). As the denominator of Z̃∗ is positive, the following conditions should be met for pursuing the

tax strategy:

δ

(1 − τ) > 1 + cσ2γP (25)

Altogether, Equations (24) and (25) provide a contractual explanation for the “under sheltering puzzle”

initiated by Weisbach (2002) and further explored by Desai and Dharmapala (2006) and McClure

(2023). Equation (25) indicates that the principal will engage in tax avoidance if the marginal

benefit of avoiding one dollar (δ) equals the marginal tax savings (1 − τ) plus an additional factor

that increases with the marginal effort costs (c) times the principal’s risk premium. Interestingly,

Equation (25) implies that even in contexts without inspection risk, a risk-aversed principal will not

engage in feasible tax avoidance if the managerial effort costs or the gross profit volatility are too

high. Additionally, while the agent’s risk aversion, γA, does not affect the threshold for engaging in

the tax strategy, it influences the intensive margin by decreasing the compensation sensitivity, as

shown in Equation (24). Specifically, delegating tax strategies to a more risk-averse agent diminishes

the optimal level of tax avoidance.

Under Pa∗ , the dynamic of the optimal terminal compensation is4

W π∗ = yP C + 1
2

(
γAσ2 + 1

c

)
(Z∗)2 T + σZ∗Ba∗

T . (26)

The terminal compensation includes a fixed component that ensures the agent’s participation.

The second and third elements in Equation 26 represent the compensation sensitivity to reported

profits, which depend on the agent’s risk aversion, effort cost, and the underlying gross profit
4We show in Appendix A that Ba∗

t = Bt +
∫ t

0
a∗

s
σ

(1 − Ns) ds, t ∈ [0, T ] is a G -Brownian motion under Pa∗
, hence

the change of sign in front of the term 1
c

that appears between Eq. (23) and Eq. (26).
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volatility.

3.2 Inspection risk

As discussed before, tax crimes are identified during an inspection, triggering an economic sanction.

This penalty is defined as:

P (θ, a) = ρτθaθ, (27)

where θ denotes the inspection time, and aθ is the current level of tax evasion detected in the

inspection. The constant ρ is a penalty factor. Low positive values of ρ reflect cases where the

authorities offer a favorable settlement to stop a tax dispute, while high values indicate legal

environments that penalize harder tax crimes. We assume the penalty is paid immediately after

the inspection, and afterward, the firm cannot reduce taxes anymore. Hence, the principal’s utility

associated with the remaining profits at any date t after the inspection satisfies

UP (L(T − t)), (28)

where L = (1 − τ)
(

µ − γP (1 − τ)σ2

2

)
. (29)

Our model revolves around time and two state variables: the firm’s total net profits, denoted by

X = {Xa
t }T

s=0 and the agent’s continuation value, denoted by W = {Wt}T
s=0. Hence, the principal’s

value function v(t, x, w), is the maximum expected utility the principal can attain at time t, given a

firm’s total net profits x and an agent’s continuation value w.

Before the inspection, while the agent implements the tax strategy, the firm’s total net profits

satisfy

dXa
t = ((1 − τ)µ + (δ + τ − 1)at(1 − Nt))dt + (1 − τ)σdBa

t , (30)
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And the agent’s continuation value follows

Wt = yP C +
∫ t

0
Z̃s (1 − Ns) σdBa

s +
∫ t

0
K̃s (1 − Ns) dNs

+
∫ t

0

(
γA

2 σ2Z̃2
s + c

2a2
s (1 − Ns) + λ

γA

[
exp

(
−γAK̃s

)
− 1

])
(1 − Ns)ds.

(31)

This continuation value depends on the participation constraint and makes the agent’s

compensation sensitive to both the firm’s reported profits through Z̃ and the contingent inspection

via K̃. We will focus on the interior solution a∗ = −Z̃/c. This illegal tax strategy is aligned with

the principal’s expectations (incentive compatibility) and maximizes the principal’s expected value

under the measure Pa∗ .

We introduce the Hamilton–Jacobi–Bellman (HJB) equation to delineate the principal’s value

function v(t, x, w), which depends on the date t, the current level of reported profits x, and the

current level of the agent’s continuation value w. We leverage the separability property of the

exponential utility function, enabling us to express v(t, x, w) in the simplified form UP (x − w)ϕ0(t),

where ϕ0 is a function of time. Using this simplified form in the HJB equation, we find that ϕ0

satisfies the following second-order partial differential equation (PDE) :

ϕ′
0(t) = inf

(Zt)t≤T ∧θ,(Kt)t≤T ∧θ

{
γP ϕ0(t)

(
(1 − τ)µ − γP

2 (1 − τ)2σ2 + λ

γA

+
(−(δ + τ − 1)

c
+ γP (1 − τ)σ2

)
Z∗

t −
(

σ2(γA + γP ) + 1
c

) (Z∗
t )2

2

− λ

γA
exp {−γAK∗

t }
)

− λ exp
{

γP

(
K∗

t − ρτZ∗
t t

c
− L(T − t)

)}}
,

(32)

where ϕ0(.) must meet the boundary conditions5:

ϕ0(T ) = 1, ϕ0(0) = exp(−γP ∗ L ∗ T ). (33)

This implies that under the condition Z ≤ −ā × c (implying a∗ = −Z
c ), the optimal contract

5K0 is zero since no jump has occurred at t = 0.
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yields:

K∗
t =

log ϕ0(t) + γP (ρτZ∗
t t

c + L(T − t))
γA + γP

, (34)

and Z∗ = (Z∗
t )t≤T ∧θ is such that:

0 =ϕ0(t)
(

−(δ + τ − 1)
c

+ γP (1 − τ)σ2 −
(

σ2(γA + γP ) + 1
c

)
Z∗

t

)
+ λρτt

c
ϕ0(t)

γP
γA+γP exp

{
− γAγP

γA + γP

(
ρτZ∗

t t

c
+ L(T − t)

)}
. (35)

The following theorem summarizes our main result.

Theorem 2. Assume that −āc < Z < 0, so a∗ = −Z
c , and let the controls (K∗, Z∗) satisfy the

equations (34) and (35). Then π∗ = (yP C , a∗, Z∗, K∗) parameterizes the optimal contract
(
W π∗

T , a∗
)
.

Proof. See Appendix B.

Finally, the optimal wage satisfies6

W π∗ =yP C +
∫ T ∧θ

0

[1
2

(
σ2γA + 1

c

)
(Z∗

s )2 ds + σZ∗
s dB∗

s

]
+
∫ T ∧θ

0

[
λ

γA
[exp (−γAK∗

s ) − 1]
]
ds + K∗

θ−1θ≤T ,

(36)

Comparing this optimal compensation to the case without inspection risk in Equation 26,

we see that both contracts consider a minimum wage yP C that ensures the agent’s participation.

Additionally, both include a component sensitive to reported profits, but now, the size of this

component depends on the occurrence of an inspection before the terminal date. If that is the

case, then this component will stop increasing after the inspection date. Furthermore, in Equation

36, the optimal compensation includes two additional elements to account for the inspection

risk,
∫ T ∧θ

0 λ [exp (−γAK∗
s ) − 1] ds + K∗

θ−1θ≤T
7. The first element is the compensation for bearing

inspection risk. The second represents the contingent loss in the compensation triggered by an

inspection. Both additional elements are jointly determined in the optimal contract sensitivity to
6The notation t− is the limit approaching t from the left. It is such that t− = lims↑t s, where s < t, and denotes

the moment immediately preceding t, where no time has elapsed between t− and t, but any event occurring at time t
has not yet happened at t−.

7The notation T ∧ θ represents the minimum of T and θ, indicating that the evasion activity ceases upon the
audit’s occurrence. By construction, we have

∫ T ∧θ

0 a∗(s)ds =
∫ T

0 a∗(s)(1 − Ns)ds

14



inspection (K∗
t ).

3.3 Analysis of the Optimal Policies

3.3.1 Tax Strategy

Figure 1 illustrates the dynamics of tax strategies for different tax rates. High tax rates encourage

contracts that promote intense tax strategies. When there are no inspection risks (legal strategies or

corrupt authorities), the aggressiveness of the strategy remains stable over time. However, for cases

with inspection risk, the optimal tax aggressiveness decreases as time passes because the expected

penalties increase over time. To further understand the dynamics of the illegal tax strategy, Figure

2 illustrates the evolution of the two forces behind the expected penalty cost: the probability of

being inspected and the respective penalty. On the one hand, a longer evasion is penalized more

severely. On the other hand, as shown in Figure 1, optimal evasion decreases over time. While the

first factor dominates initially, the latter becomes more prominent at the end of the contract. The

combination of both factors generates a concave dynamic for the penalty.

3.3.2 Wage Dynamics

Figure 3 illustrates the dynamics of the optimal sensitivity of the compensation to the inspection

risk, denoted by K∗ = (K∗
t )0≤t≤T . Its analysis reveals several important aspects. Initially, at time

t = 0, the optimal sensitivity to inspection, K∗(t), must be zero to maintain the integrity of the

model for two reasons. First, the fixed compensation yP C at the onset of the contract implies that

K∗(0) is equal to zero to meet the participation constraint. Second, as the penalty is proportional

to the contract length, at t = 0, any evasion detected at this point received a null penalty. Then,

the evolution of K∗ reflects the risk premium paid to the manager according to the evolution of the

penalty P (a∗
t , t). The concave nature of the penalty over time, as illustrated in Figure 2, is mirrored

in Figure 3 by the convex shape of the compensation sensitivity to audit risk K∗.

Figure 4 illustrates the process of the optimal terminal compensation for a firm with and

without inspection risk. Up to time θ ∧ T , the compensation for the agent facing inspection risk

is larger to offset the burden of bearing inspection risk. If an inspection occurs at θ < T , the

contingent loss for the inspection is triggered, and its compensation remains constant until the end

15



of the project because no additional tax strategy can be pursued.

3.4 Additional analyses of the optimal dynamic contract

3.4.1 Self-Enforceability of the Optimal Contract

This section shows that the optimal dynamic contract can be self-enforceable in our setting. Consider

an initial contract denoted by Π∗
0 and ending at t = 0. The principal’s decision to compensate this

agent hinges on the following condition

E0[Up(XΠ∗
1

T − W
Π∗

1
T − P (aΠ∗

1 , θ)10≤θ≤T − W
Π∗

0
0− )] ≥ E0[Up(X0

T )]. (37)

Here, X
Π∗

1
T and W

Π∗
1

T represent the terminal net profit and wage under a new contract Π∗
1, respectively.

P (aΠ∗
1 , θ) denotes the penalty function, and W

Π∗
0

0− symbolizes the wage promised for the just-concluded

contract Π∗
0. This condition implies that the principal will fulfill the contract’s financial obligations

if it is expected to be more beneficial than the alternative of defaulting on payment and being unable

to implement tax strategies in the upcoming period. Assuming stationarity on this condition, i.e.,

all agents are identical for the purpose of the contract, then Π∗
1 and Π∗

0 are also identical (hereafter

denoted by Π∗). Using CARA utility function properties, we simplify this condition by focusing on

the principal’s certainty equivalent. This leads us to the following statement:

Condition 1. The contract is self-enforceable if:

W0− ≤ E0(χ∗
1) − γP

2 V ar(χ∗
1) −

(
E0(χ∗

0) − γP

2 V ar(χ∗
0)
)

. (38)

where

χ∗
1 := XΠ∗

T − W Π∗
T − P (aΠ∗

, θ)10≤θ≤T , (39)

χ∗
0 := X0

T . (40)

Chen and Chu (2005) suggests that the folk theorem’s effectiveness for contracting tax evasion

hinges on an endless sequence of interactions between the principal and the agent. Our approach

differs as it considers the principal engaging with a succession of agents, where each is functionally
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indistinguishable from the others in terms of their role and impact on the contract. This arrangement

effectively creates a scenario that mirrors the conditions of an indefinite series of interactions, as

postulated by the folk theorem, thereby preserving the theorem’s relevance and applicability in our

model.

3.4.2 Alternative Penalisation

Next, we explore the implications of an alternative penalty structure where the agent, instead of

the principal, is penalized for tax evasion. We modify the agent’s continuation value to reflect this

change and adjust the Hamilton–Jacobi–Bellman (HJB) equation accordingly.

In the context where the agent bears the penalty, the continuation value Wt is modified as

follows:

Wt = yP C +
∫ t

0
Zs (1 − Ns) σdBa

s +
∫ t

0
(Ks − ρτass) (1 − Ns) dNs

+
∫ t

0

(
γA

2 σ2Z2
s + c

2a2
s (1 − Ns) + λ

γA
[exp (−γA(Ks − ρτass)) − 1]

)
(1 − Ns)ds.

(41)

Employing similar techniques as used in the main model, the HJB equation for this scenario

is:

ϕ′
0(t) = inf

(Zt)t≤T ∧θ,(Kt)t≤T ∧θ

{
γP ϕ0(t)

(
(1 − τ)µ − γP

2 (1 − τ)2σ2 + λ

γA

+
(−(δ + τ − 1)

c
+ γP (1 − τ)σ2

)
Z∗

t −
(

σ2(γA + γP ) + 1
c

) (Z∗
t )2

2

− λ

γA
exp

{
−γA(K∗

t + ρτZ∗
t t

c
)
})

− λ exp {γP (K∗
t − L(T − t))}

}
,

(42)

The optimal controls in this scenario are determined as follows:

K∗
t =

log ϕ0(t) + (γA
ρτZ∗

t t
c + γP L(T − t))

γA + γP
, (43)

0 =
(

−(δ + τ − 1)
c

+ γP (1 − τ)σ2 −
(

σ2(γA + γP ) + 1
c

)
Z∗

t

)
+ λρτt

c
ϕ0(t)

−γA
γA+γP exp

{
− γAγP

γA + γP

(
ρτZ∗

t t

c
+ L(T − t)

)}
. (44)

Under the condition that γA = γP , the optimal contract in this scenario is the same as in our
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main case. This equivalence suggests that penalizing the agent or the firm’s owner yields similar

outcomes in terms of the optimal contract structure.

It is noteworthy that this result contrasts with the findings in Crocker and Slemrod (2005).

They argue that penalties imposed directly on the agent are more effective in curbing tax evasion

than those imposed on shareholders. This is because the agent’s decision to engage in legal or

illegal activities creates an information asymmetry outside the principal’s control, leading to the

“non-equivalency” of penalties.

In contrast, our model presents a different scenario. Here, the principal delegates tax evasion

tasks to the agent, with the information asymmetry concerning the extent of unreported profits

rather than the illegal nature of the activity itself. This variation leads to a divergent outcome:

if both the agent and the principal share equivalent levels of risk aversion, penalizing the agent

becomes the same as penalizing the principal.

4 Calibration

In this section, we calibrate the model to address our last research question regarding the magnitude

of the optimal compensation relative to the size of tax reductions. For this analysis, we borrow some

parameter estimates from recent studies. From Bertomeu et al. (2022) we obtain the risk aversion

coefficients (γA and γP ) as their mid-range estimate (0.61/2). From Nikolov et al. (2021) we obtain

the profit-generating process parameters as a fraction of total assets for Compustat firms (µ = 0.066

and σ = 0.034). From Hoopes et al. (2012) we obtain the average percentage of Compustat firms

inspected by the Internal Revenue Service (IRS) in a year (29%), which we use to set the inspection

frequency λ.8 Based on McClure (2023), we set the intermediation expenses to be 1 − δ = 0.064.

The corporate income tax rate is τ = 0.2581, representing the average combined federal and state

statutory rate in 2022 (Enache 2022). Finally, we assume perfect competition in the labor market

(ypc = 0), and set an upper bar on a, which is never binding. Finally, to match the duration of the

parameters, we solve the model for T = 1.

To calibrate the remaining parameters, c and ρ , we match two simulated moments with their

empirical counterparts. The calibration is conducted by minimizing a weighted sum of squares
8To match the 29% probability of inspection in a year, we define λ = − log(1 − 0.29).

18



between the simulated moments of the model and the empirical moments. In Appendix C, we

describe how to solve the model numerically. The simulation is conducted as follows. We solve the

model for a given combination of c and ρ and use respective policy functions to simulate a panel of

firms between 0 and T .

We match two moments. The first one is the expected value of the tax expenses under a tax

strategy relative to the case without any tax deduction, E[(τIa
T )/(τIT )]. We use the IRS’ corporate

tax gap’s estimates and tax collection data for the empirical match. In particular, we consider τIa
T

as the actual IRS’s tax collection and τIT to be equal to this collection plus the tax gap the IRS

expected to receive but did not collect. The second moment is the expected value of the penalty

relative to the tax collection from a firm pursuing a tax strategy, E[(ρ − 1)τθaθ/(τIa
T )]. Notice that

by using (ρ − 1), we capture the fraction of the penalty payment that is additional to the owed taxes

in our model. Consistently, we use the IRS’s penalties collected from corporations for the empirical

match. To compute the empirical moments, we collected these variables from the IRS Data book

for the available years between 2000 and 2022. We obtain that, on average, 87.9% of the expected

tax collection was actually paid and that the penalties represented 0.643% of the actual tax paid.

With these two empirical moments, the calibrated parameters are c = 7.604 and ρ = 1.504.9

4.1 Agent compensation relative to the evaded taxes

We now use the calibrated parameters to quantify the magnitude of the agent compensation relative

to the intensity of the illegal tax strategy. The expected benefit for the principal driven by the tax

evasion is calculated as follows:

Ea∗ [
Xa∗

T − W π∗ − P (θ, a∗)1θ<T + W π∗ − X0
T

]
=
∫ T

0

(∫ T ∧t

0
(δ + τ − 1)a∗

sds

)
· λe−λt dt

−
∫ T

0
ρτa∗

s · s · λe−λs ds

+ e−λT
∫ T

0
(δ + τ − 1)a∗

sdt,

(45)

9A structural estimation is not feasible in our setup given that our model does not consider other observable
corporate policies (cash, investment, financing), limiting our capacity to simulate observable moments. Moreover,
data on tax evasion and penalties at the firm level are not available. These facts preclude us from obtaining more
moment conditions to perform a structural estimation.
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The first three terms on the left-hand side represent the total net profits received by the principal

minus the agent’s compensation and penalties. To capture the magnitude of the benefits driven by

the illegal tax strategy, we subtract from these residual profits the net profits that the principal

would receive with a legal strategy. The expected value of the agent’s compensation, as seen from

the initial date, is represented by:

Ea∗ [W π∗ ] = yP C +
∫ T

0

(∫ t∧T

0

1
2

(
σ2γA + 1

c

)
(Z∗

s )2 ds

)
λe−λt dt

+
∫ T

0
K∗

t λe−λt dt +
∫ T

0

(∫ t∧T

0

λ

γA
(exp(−γAK∗

s ) − 1) ds

)
λe−λt dt

+ e−λT
{∫ T

0

1
2

(
σ2γA + 1

c

)
(Z∗

s )2 dt +
∫ T

0

(
λ

γA
(exp(−γAK∗

s ) − 1)
)

dt

}
,

(46)

We analyze the agent’s expected compensation relative of the expected tax evasion benefits

using the following ratio:
Ea∗ [W π∗ ]

Ea∗ [Xa∗
T − P (θ, a∗)1θ<T − X0

T ]
. (47)

We solve numerically the above expressions using our baseline calibration and obtain that 37.8%

of the expected marginal benefit derived from tax evasion corresponds to the agent’s compensation.

This calibration highlights the magnitude of the economic incentives for managers in pursuing tax

strategies. Indeed, recent public debates on fair taxation have noticed that managers’ compensation

exceeds tax payments by top U.S. corporations because managers are rewarded by implementing

tax avoidance strategies The Guardian (2024); Anderson et al. (2024). To further understand

the managerial economic incentives, we show in Figure 5 the comparative statics of the agent’s

share of the tax strategy benefits. For simplicity, we refer to the ratio in Equation 47 as W/∆X.

Intermediation expenses (1 − δ) decrease the expected compensation as a fraction of tax savings.

The intuition behind this is that as the benefit of the tax strategy is captured by intermediaries,

the agent’s effort in reducing tax expenses is less valuable for the principal. Then we look at tax

institutional features. We find that the agent’s compensation increases with the tax rate τ . This is

because it becomes more profitable for the principal to hire the agent to implement a tax strategy

and also because the manager faces higher expected penalties in case of inspection, increasing

the risk premium in her compensation. The parameters defining the penalty, λ and ρ, play a

similar role in discouraging tax avoidance, resulting in a lower agent’s compensation. However, the
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compensation is more sensitive to changes in the probability of inspection than to changes in the

penalty factor. For example, if the inspection rate increases from 0.3 to 0.4 (a 10 percentage point

increase), it implies a reduction in the compensation ratio of almost 4 percentage points. Similarly,

a 10 percentage point increase in the penalty factor from 1.5 to 1.6 is linked to a reduction in the

compensation ratio of less than 1 percentage point.

5 Conclusion

This paper examines corporate tax strategies from a dynamic contracting approach. Our model

provides a theoretical explanation for why not all companies engage in tax strategies, even in cases

where legal avoidance is feasible. We derive the optimal compensation for the agent implementing

the tax strategy, contrasting scenarios with and without inspections from tax authorities. Inspection

risk increases the agent’s compensation. In the event of an audit, the agent’s compensation suffers

a lump-sum loss. Tax aggressiveness decreases over time as the expected penalty increases. Our

calibration analysis suggests that a relevant fraction of the gains derived from tax strategies are

paid to the agent.
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Figures

Figure 1: Optimal Tax Strategy

Note: This figure illustrates the dynamics of the optimal tax strategy a∗(t) for the model with and without inspection
risk.

24



Figure 2: Penalty Dynamics

Note: This figure illustrates the dynamics of the penalty P (a∗(t), t) imposed on detected tax-evading firms

Figure 3: Compensation Sensitivity to Inspection Risk

Note: This figure illustrates the dynamics of the optimal sensitivity of the compensation to the inspection risk K∗
t .
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Figure 4: The Dynamics of the Optimal Compensation

Note: This figure illustrates the dynamics of the terminal compensation process for the model with and without
inspection risk.
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Figure 5: Agent’s compensation relative to the gains derived from the tax strategy
Ea∗ [W π∗ ]

Ea∗ [Xa∗
T −P (θ,a∗)1θ<T −X0

T ]

Note: This figure provides the comparative statics for the optimal agent’s compensation, based on the parameter
values in Section 4. In the plot, we refer to this ratio by W

∆X
.

27



A Appendix: Probability Background

Let
(
Ω, G,P0) be a complete probability space, and consider the following stochastic processes:

• B a standard F = (Ft)t≥0-Brownian motion,

• N a right-continuous single-jump process defined as Nt = 1θ≤t, t ∈ [0, T ] where θ is some

positive random variable independent of B that models the random inspection time.

We expand the information set F to incorporate details regarding inspections, specifically the timing

of any past inspections. More specifically, we progressively enlarge the filtration associated with the

Brownian motion and we consider G = (Gt)t≥0 the smallest complete right-continuous enlargement of

F such that θ is a G-stopping time (see Aksamit and Jeanblanc (2017) and Jeanblanc and Rutkowski

(2000)). The single-jump process N is assumed to have fixed intensity λ, and

Mt = Nt −
∫ t

0
λ (1 − Ns) ds, t ∈ [0, T ]

is a G-compensated martingale.

Furthermore, the probability that an inspection occurs during a period [t, T ], with t < T , is:

P(t ≤ θ ≤ T ) = 1 − exp{−λ(T − t)}.

We denote by P0 (respectively Pa ) the probability distribution of the firm’s income in the

absence of action from the agent (respectively with the action strategy a = (at)0≤t≤T is realized by

the agent). The probability measures P0 and Pa are equivalent and the Radon-Nikodym derivative

of Pa with respect of P0 is such that

dPa

dP0

∣∣∣∣
GT

= exp
(∫ T

0
−as

σ
(1 − Ns) dBs − 1

2

∫ T

0

∣∣∣∣as

σ

∣∣∣∣2 (1 − Ns) ds

)

and Ba
t = Bt +

∫ t
0

as
σ (1 − Ns) ds, t ∈ [0, T ] is a G -Brownian motion under Pa.
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B Appendix: Omitted Proofs

Proof of Theorem 1. We provide here the technical details and derivations for the optimal process

Z̃∗ that were omitted in the main text. Using the representation of W , the principal’s expected

utility can be written

Ea∗ [
UP

(
Xa∗

T − W
)]

we know that

Xa∗
T =

∫ T

0

(
(1 − τ)µ − (δ + τ − 1) Z̃t

c

)
dt + (1 − τ)σ

∫ T

0
dBa∗

t

W = y0 +
∫ T

0

1
2
(
γAσ2 + 1

c

)
Z̃2

t dt + σ

∫ T

0
Z̃tdBa∗

t

Xa∗
T − W =

∫ T

0

(
(1 − τ)µ − δ + τ − 1

c
Z̃t − 1

2(γAσ2 + 1
c

)Z̃2
t

)
dt

+ σ

∫ T

0

(
(1 − τ) − Z̃t

)
dBa∗

t − y0

(48)

or in differential form

dXa∗
t − dWt = h(Z̃t)dt + σ((1 − τ) − Z̃t)dBa∗

t

h(Z̃t) = (1 − τ)µ − δ + τ − 1
c

Z̃t − 1
2(γAσ2 + 1

c
)Z̃2

t

Xa∗
0 − W0 = −y0

(49)

note that the dynamics of dXa∗
t − dWt do not depend on t, which suggests that the optimal action

is constant (e.g. {Z̃t}T
s=0 = Z̃). Using the properties of the exponential utility function, we have

that

Ea∗ [
UP

(
Xa∗

T − W
)]

= − exp
(

− γP

(
− y0 + h(Z̃t)T

)
+ 1

2γ2
P σ2((1 − τ) − Z̃)2T

)
(50)

The first-order condition implies that

δ + τ − 1
c

+ (γAσ2 + 1
c

)Z̃ − γP σ2((1 − τ) − Z̃) = 0 (51)
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solving for Z̃ yields

Z̃ =
γP σ2(1 − τ) − δ+τ−1

c

σ2(γA + γP ) + 1
c

(52)

Proof of Theorem 2. We start by proving the following proposition:

Proposition 1 (Sufficient Conditions for Participation). Consider a contract defined by Π =

(y0, a, Z̃t, K̃t), where y0 is the initial value, a is a parameter, Z̃t and K̃t are time-dependent variables.

This contract offers a wage, denoted as W Π
T , which is the value at time T of a process governed by

the following dynamics:

dW Π
t =

(1
2(γAσ2 − 1

c
)Z̃2

t + λ

γA
(exp(−γAK̃t) − 1) + λK̃t

)
dt + K̃tdMt + Z̃tσdBt, (53)

with W Π
0 = y0, (54)

The contract satisfies the participation constraint if y0 ≥ yP C .

We define a wage process that contains sensitivities Z̃t and K̃t with respect to the Brownian

component and the inspection process, as well as a deterministic payment g(Zt, Kt). We find the

processes Z̃t, K̃t, and the function f(t, Wt) := UA(Wt − c
2
∫ t

0 a2
sds) in equilibrium. For a contract

π = (y0, a, β, H) consider the following wage process

dW Π
t = g(Z̃t, K̃t)dt + Z̃tσdBt + K̃tdMt (55)

with initial condition W π
0 = y0. Applying Itô’s lemma for jump-diffusion processes, and assuming

the time of the inspection θ has not yet occurred, we have:
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dUA(W Π
t − c

2
∫ t

0 a2
sds)

UA(W Π
t − c

2
∫ t

0 a2
sds)

= γA
c

2a2
t dt − γA(g(Z̃t, K̃t) − λK̃t)dt − γAZ̃tσ(−at

σ
dt + dBa

t )

+ 1
2γ2

Aσ2Z̃2
t dt +

(
exp(−γAK̃t) − 1

)
dNt

= γA

( c

2a2
t − g(Z̃t, K̃t) + 1

2γAσ2Z̃2
t + λ

γA
(exp(−γAK̃t) − 1)) + λK̃t + atZ̃t

)
dt

− γAZ̃tσdBa
t + (exp(−γAKt) − 1)dMt

(56)

The utility process has to be a Pa-martingale (Proposition 1 in Sannikov 2008). We choose the

minimum compensation g such that the drift of the process is equal to zero.

g(Z̃t, K̃t) = 1
2γAσ2Z̃2

t + λ

γA
(exp(−γAK̃t) − 1)) + λK̃t + inf

a

{ c

2a2
t + atZ̃t

}
(57)

which yields an optimal action a∗
t = − Z̃t

c and a compensation function g equal to

g(Z̃t, K̃t) = 1
2

(
γAσ2 − 1

c

)
Z̃2

t + λ

γA
(exp(−γAK̃t) − 1) + λK̃t (58)

so under Pa

dWt =
(1

2

(
γAσ2 − 1

c

)
Z2

t + λ

γA
(exp(−γAK̃t) − 1) − atZ̃t

)
dt + K̃tdNt + Z̃tσdBa

t , (59)

and under Pa∗ :

dWt =
(1

2(γAσ2 + 1
c

)Z̃2
t + λ

γA
(exp(−γAK̃t) − 1)

)
dt + K̃tdNt + Z̃tσdBa∗

t , (60)

Next, given the dynamics of dWt we compute dUA(Wt)/UA(Wt) under P0

dUA(Wt) = −1
2γA

Z̃2
t

c
UA(Wt)dt − γAZ̃tσUA(Wt)dBt + (exp(−γAK̃t) − 1)UA(Wt)dMt (61)

Now we use Lemma 3.1. in Martin and Villeneuve (2023) to show that if (UA(Wt), −γAZ̃tσUA(Wt), (exp(−γAK̃t)−

1)UA(Wt)) is a solution satisfying the participation constrain.
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Setting −γAUA(Wt)Z̃t = Z
(W,a)
t and (exp(−K̃tγA) − 1)UA(Wt) = −K

(W,a)
t let us identify that

UA(Wt) is a solution to the BDSE. This solution is unique, and the participation constraint is

satisfied only if

UA(W0) = UA(y0) = U
(W,a)
0 = E

[
UA

(
W − c

2

∫ T

0
a2

sds
)]

≥ UA(yP C) (62)

Hence, the wage process given by the wage dynamics in Proposition 1 will satisfy the participation

constraint if y0 ≥ yP C . The principal binds the contract at the lowest initial value for the wage

process that satisfies the participation constraint, so y0 = yP C .

Now, we move to prove Theorem 2. We do so by following the proof of Lemma 4.1 in Martin

and Villeneuve (2023). We consider a family of stochastic processes Ra(W ) := (Ra
t )t∈[0,T ] indexed

by a that satisfies:

1. Ra
T = UA

(
W − c

2
∫ T

0 a2
s (1 − Ns) ds

)
,

2. Ra is a Pa-supermartingale for any effort a,

3. Ra
0 is independent of a.

4. There exists a∗ such that Ra∗ is a Pa∗-martingale.

Then,

Ra∗
0 = Ea∗

[
UA

(
W − c

2

∫ T

0
(a∗

s)2(1 − Ns)ds

)]
≥ Ea

[
UA

(
W − c

2

∫ T

0
a2

s(1 − Ns)ds
)]

,

meaning that a∗ is the optimal agent’s action in response to the contract W .

We define the family Ra(W ) := (Ra
t )t∈[0,T ] as

Ra
t := UA

(
W Π

t − c

2

∫ t

0
a2

s (1 − Ns) ds

)

Applying Itô’s formula to Ra
t under the probability measure P0 leads to:

dRa
t

Ra
t

= (1 − Nt)
[
−γAZ̃tσdBt +

(
e−γAK̃t − 1

)
dNt+

+ γA

{1
2γAσ2Z̃2

t − g
(
Z̃t, K̃t

)
+ c

2a2
t + λK̃t + λ

γA

(
e−γAK̃t − 1

)}
dt

]
.

(63)
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where g is defined as Proposition 1.

Assuming that the tax strategy maximizes equation (9), the principal’s problem becomes

VP := sup
y≥ypc

v(0, x, w)

where

v(0, x, w) = sup
π

E∗ [UP (Xa
T − W π

T )]

To construct an optimal contract, we will develop a smooth solution for the Hamilton-Jacobi-

Bellman (HJB) equation of the principal’s problem:

0 =∂tv(t, x, w) + sup
Z,K

{
∂xv(t, x, w)

(
(1 − τ)µ − (δ + τ − 1)Zt

c

)
+ ∂yv(t, x, w)

[
Z2

t

2

(1
c

+ σ2γA

)
+ λ

γA
[exp (−γAKt) − 1]

]
+ λ

[
UP

(
x − y − Kt − ρτZtt

c
+ L · (T − t)

)
− v(t, x, w)

]
+∂xxv(t, x, w)(1 − τ)2σ2

2 + ∂yyv(t, x, w)Z2
t σ2

2 + ∂xyv(t, x, w)Zt(1 − τ)σ2
}

.

(64)

The function UP (x − w)ϕ0(t) serves as a classical solution to our HJB equation. We find that

:

ϕ′
0(t) = inf

(Zt)t≤T ∧θ,(Kt)t≤T ∧θ

{
γP ϕ0(t)

(
(1 − τ)µ − γP

2 (1 − τ)2σ2 + λ

γA

+
(−(δ + τ − 1)

c
+ γP (1 − τ)σ2

)
Zt

−
(

σ2(γA + γP ) + 1
c

) (Zt)2

2

− λ

γA
exp {−γAKt}

)
− λ exp

{
γp

(
Kt − ρτZtt

c
− L(T − t)

)}}
(65)

Taking the first order condition with respect to the controls K and Z give

K∗
t =

log ϕ0(t) + γP (ρτZ∗
t t

c + L(T − t))
γA + γP

(66)
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and Z∗ = (Z∗
t )t≤T ∧θ such that:

0 =ϕ0(t)
(

−(δ + τ − 1)
c

+ γP (1 − τ)σ2 −
(

σ2(γA + γP ) + 1
c

)
Z∗

t

)
+ λρτt

c
ϕ0(t)

γP
γA+γP exp

{
− γAγP

γA + γP

(
ρτZ∗

t t

c
+ L(T − t)

)}
. (67)

These optimal controls are bounded and independent of y. Finally, it follows that:

ϕ′
0(t) = γP ϕ0(t)

(
(1 − τ)µ − γP

2 (1 − τ)2σ2 + λ

γA
+
(−(δ + τ − 1)

c
+ γP (1 − τ)σ2

)
Z∗

t

−
(

σ2(γA + γP ) + 1
c

) (Z∗
t )2

2 − λ

γA
exp {−γAK∗

t }
)

− λ exp
{

γp

(
K∗

t − pZ∗
t t

c
− L(T − t)

)}

C Numerical Solution

To compute K̃t and Z̃t as well as ϕ0 in equation (42) for the case of illegal tax-evasion, we perform

the following iterative procedure. Processes K̃i
t and Z̃i

t and the function ϕi
0 are indexed by the

iteration i.

1. Initialize Z̃0
t with Equation (24).

2. Compute K0
t based on Equation (34).

3. Solve for ϕ0
0 in Equation (35) using finite-differences based on the boundary condition in (33).

4. In iteration n compute Z̃n
t using Equation (35) given ϕn−1

0 .

5. Go to step 2, and stop when Z̃t, K̃ and ϕ0 converge.
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