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Abstract

We explore the impact of research design choices on the profitability of Machine
learning investment strategies. Results from more than a thousand strategies
show that considerable variation is induced by methodological choices on strat-
egy returns. The non-standard errors of machine-learning strategies are often
higher than the standard errors and remain sizeable even after controlling for
some high-impact decisions. While eliminating micro-caps and using value-
weighted portfolios reduces non-standard errors, their size is still quantitatively
comparable to the traditional standard errors.
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1 Introduction

Recent advancements in computational finance have underscored the potential of ma-
chine learning to enhance the predictive accuracy of return forecasting models. By
leveraging non-linear relationships and high-dimensional data, these methods have
shown promise in uncovering complex sources of predictability, hitherto overlooked
by traditional models. Compared to the traditional characteristic-based portfolio
sorting methods, machine learning tools allow researchers a convenient way to in-
corporate a large number of predictors in a predictive set-up. As the zoo of vari-
ables predicting returns is already very large, machine-learning methods are naturally
adapted to handle the challenges of combining signals from multiple variables into a
single all-encompassing strategy. Theoretical benefits aside, empirical results in Gu
et al. (2020), Azevedo et al. (2023),Bali et al. (2023),Bianchi et al. (2021),Blitz et al.
(2023), Cakici et al. (2023a), Cakici et al. (2023b) and Cakici et al. (2024) convinc-
ingly demonstrate that machine learning can be used to predict asset returns across
various asset classes, geographies, and horizons.

Therefore, there is ample evidence that suggests that researchers can use ML tools
to develop better return forecasting models. However, a researcher needs to make cer-
tain choices when using machine learning in return forecasting. These choices include,
but are not limited to the size of training and validation windows, the outcome vari-
able, data filtering, weighting, and the set of predictor variables. In a sample case
with 10 decision variables, each offering two decision paths, the total specification are
210 je. 1024. Accommodating more complex choices can lead to thousands of possi-
ble paths that the research design could take. While most studies integrate some level
of robustness checks, keeping up with the entire universe of possibilities is virtually
impossible. Further, with the computationally intensive nature of machine learning
tasks, it is extremely challenging to explore the impact of all of these choices even if a
researcher wishes to. Therefore, some of these calls are usually left to the better judg-
ment of the researcher. While the sensitivity of findings to even apparently harmless
empirical decisions is well-acknowledged in the literature!, we have only very recently
begun to acknowledge the size of the problem at hand. Menkveld et al. (2024) coin
the term to Non-standard errors to denote the uncertainty in estimates due to dif-
ferent research choices. Studies like Soebhag et al. (2023) and Walter et al. (2023),

and Fieberg et al. (2024) show that non-standard errors can be as large, if not larger

LA casual look at the robustness checks sections in contemporary finance papers should convince
a reader of the veracity of this statement



than traditional standard errors. This phenomenon raises important questions about
the reproducibility and reliability of financial research. It underscores the need for a
possibly more systematic approach to the choice of methodological specifications and
the importance of transparency in reporting research methodologies and results. As
even seemingly innocuous choices can have a significant impact on the final results,
unless we conduct a formal analysis of all (or at least, most) of the design choices
together, it will be hard to know which choices matter and which do not through pure
intuition.

Even in asset-pricing studies that use single characteristic sorting, there are thou-
sands of possible choices (Walter et al. (2023) use as many as 69,120 potential speci-
fications). Extending the analysis to machine learning-based portfolios, the possible
list of choices (and their possible impact) further expands. Machine-learning users
have to make many additional choices for modeling the relationship between returns
and predictor characteristics. With the number of machine learning models available,
(see Gu et al. (2020) for a subset of the possible models), it would not be unfair to
say that scholars in the field are spoilt for choices. As argued by Harvey (2017) and
Coqueret (2023), such a large number of choices might exacerbate the publication
bias in favor of positive results.

The question that looms large is - what should we do about non-standard errors?
In this paper, we take the approach suggested by Coqueret (2023) and Fabozzi and
Prado (2018), among others, i.e. to consider the entire possible set of results un-
der different decision paths. While Soebhag et al. (2023) suggests standardization
of methodological choices, Walter et al. (2023) suggests reporting the entire distri-
bution of outcomes. We believe, however, that exploring all (or even most) possible
paths is not possible at all times. Even in portfolio sorts (Walter et al., 2023), the
process of estimating all possible outcomes is very computationally intensive, albeit
doable. However, in some cases, the computational burden may be too excessive,
particularly for researchers without access to (relatively) costly infrastructure. In the
case of machine learning-based portfolios, a back of the envelope suggests an overall
computational time of 3-6 months on a single computer for even a modest number
of decision variables. Unlike Coqueret (2023) or Walter et al. (2023), our objective
in this study is not to suggest better ways of dealing with methodological variations.
Instead, we aim to quantify the impact of various decisions on the final performance of
portfolios created from machine learning forecasts. In doing so, we hope to shed light

on the trade-offs involved in various methodological choices during the construction



of machine learning-based investment strategies.

Following Walter et al. (2023), we define non-standard errors as the inter-quantile
range of the returns obtained from various methodological choices. To this regard,
we evaluate the "non-standard errors" arising from eight decision criteria, resulting
in 384 total paths for each machine learning model. Our results show a substantial
variation in returns generated by machine learning portfolios. Depending on how the
forecasts are generated, the non-standard errors of returns can be as large as 4.8 times
the standard errors. Our findings show that non-standard errors are sizeable, and are
often as large as the standard errors.

Our study contributes to three strands of the literature in financial economics.
First, we contribute to the literature on empirical models of return forecasting. The
typical return forecasting study involves developing models of return prediction and
comparing their performance against benchmarks. Such studies typically focus on the
benefits of methodological improvements in the forecasting model, but not so much on
other choices such as sampling window and industry filtering. Our primary contribu-
tion is to provide a comprehensive overview of the impact of various methodological
choices on the outcome, i.e. portfolio performance.

Interest in applications of Machine learning in Finance has grown substantially in
the last decade or so. Since the seminal work of Gu et al. (2020), many variants of
machine learning models have been used to predict asset returns. Our second con-
tribution is to this growing body of literature. That there are many choices while
using ML in return forecasting is well understood. But are the differences between
specifications large enough to warrant caution? Avramov et al. (2023) shows that
removing certain types of stocks considerably reduces the performance of machine-
learning strategies. We expand this line of thought using a broader set of choices
that include various considerations that hitherto researchers might have ignored. By
providing a big-picture understanding of how the performance of machine learning
strategies varies across decision paths, we conduct a kind of large-scale sensitivity
analysis of the efficacy of machine learning in return forecasting. Additionally, by
systematically analyzing the effects of various methodological choices, we can un-
derstand which factors are most influential in determining the success of a machine
learning-based investment strategy.

Finally, we also add to the nascent literature in finance that explores choice-
induced variation in research outcomes (i.e. non-standard errors). Research as far

back as Leamer (1983) has tried to understand the role of choices in statistical out-



comes. However, the analysis of Leamer and Leonard (1983) and Sala-I-Martin (1997)
deals with uncertainty around the choice of dependent variables. The overall choices
available to a researcher relate to issues far beyond variable selection. Now that ma-
chine learning and other statistical tools that can handle large dimension datasets are
available, at least in forecasting, other decisions could play a bigger role in inducing
methodological variation vis-a-vis variable selection. Our analytical approach can
efficiently accommodate such multi-choice settings.

To summarise, we find that the choices regarding the inclusion of micro-caps and
penny stocks and the weighting of stocks have a significant impact on average returns.
Further, an increase in sampling window length yields higher performance, but large
windows are not needed for Boosting-based strategies. Based on our results, we
argue that financials and utilities should not be excluded from the sample, at least
not when using machine learning. Certain methodological choices can reduce the
methodological variation around strategy returns, but the non-standard errors remain
sizeable.

The rest of the paper proceeds as follows. Section 2 provides a background of the
data and methods used. We then present our empirical results in Section 3. Finally,

Section 4 concludes.

2 Data and Methodology

2.1 Data

Our dataset consists of the standard sample used in most asset-pricing studies. It
consists of common stocks traded at the NYSE, AMEX, and NASDAQ stock ex-
changes. We collect the data on 200+ predictors used by Chen and Zimmermann
(2021) from their website - opensourceassetpricing.com. Our returns are adjusted for
delisting (Shumway, 1997), and following , we replace missing values of predictors
with their monthly cross-sectional average. Our sample period is from 1957 to 2023.
Like Walter et al. (2023), we do not consider the possible methodological variation in
the construction of predictor variables and treat them as given. One could argue that
even the choice of variables is expected to introduce methodological variation. As we
are dealing with forecasting, that too with ML methods, we assume that a researcher
would like to use the maximum possible set of variables available to them. So, we do
not consider the possibility that a particular researcher would like to use a subset of

the total variables available, although we do acknowledge that the choice of variables


opensourceassetpricing.com

can have a significant impact.

2.2 Methodology

We now describe the general version of the forecasting model used for return predic-
tion, along with the methodological choices involved in estimating the parameters of
the models.

Like Gu et al. (2020), our baseline return prediction model can be express in the

form:

Tigt1 = Ey(ri41) + €01 (1)

where

Et(ri,t—i-l) = f(Zzt) (2)

where ¢ refers to the stock ’i’ and ¢ refers to the months t=1,...T. Our objective
is to estimate a function that minimises out-of-sample predictive errors for realized
rit+1 (Gu et al, 2020). As discussed, our basic dataset is the typical unbalanced
panel of stocks used in asset-pricing studies. However, the actual data used in the
estimation depend on the aforementioned methodological choices.

In the current study, we use eight choices that researchers have to consider in a
study on return predictability. Some of these choices follow from typical asset-pricing
studies like the ones discussed in Soebhag et al. (2023). Some are unique to return

forecasting or Machine learning methods. Our decision choices are as follows:

1. Training Window An important decision that researchers have to make for
a return forecasting model is the size and type of the model training window.
Both rolling and expanding windows are popular. While Rasekhschaffe and
Jones (2019) use a rolling window, Gu et al. (2020) use expanding windows.
Further, with rolling windows, the ideal duration of the sampling window is
unknown. So, researchers often use data in multiples of five years. In the
current draft, we use three alternatives - 5, 10, and 15-year rolling windows.
We plan on adding more complex sampling window schemes in the next version

of the manuscript.

2. Size Filter We also take into account the decision to include or exclude micro-
caps. From a practical standpoint, the exclusion of small stocks is highly rele-

vant as such stocks are often illiquid, costly to trade, and even costlier to short.



While Kelly et al include such micro-caps in their base results, Avramov et al.
(2023) show that exclusion of such stocks can significantly dent the performance
of ML strategies. We impose a 20% NYSE breakpoint size filter in cases where
micro-caps are excluded. We assume that this filter is applied before the model

is trained.

. Price Filter Harvey and Liu (2020) show that only about 18% of the studies
impose a price filter to exclude small stocks. As discussed by Walter et al.
(2023), price exclusions are quite different from size-based filtering as about 40%
of stocks below $5 in their sample are not excluded in the size filter. Therefore,

a price filter involves filtering out stocks below $5 in price.

. Utilities Utilities firms are often excluded on account of the regulatory envi-
ronment that they operate under. Many predictors in return forecasting use
accounting data. Therefore, including firms that are expected to operate in
different accounting environments can create problems. We do not have any
ex-ante preference on the inclusion or exclusion of utilities. We believe it would
be interesting to check if this filter has any significant impact on the returns of

ML strategies.

. Financials The case for the exclusion of financials is arguably stronger than
that for Utilities. Financial firms are different from other firms in terms of their
business model as well as the meaning of various accounting indicators. Finan-
cial firms are often highly leveraged and incomparable to firms in other indus-
tries. For studies that try to estimate premia related to underlying accounting
characteristics, this can make a huge difference. However, in large-scale ML
models, one could very well argue that the heterogeneity of financial stocks
can be explicitly modelled by the non-linear interactions within the models.

Therefore, there is a case to be made to include financials in the analysis.

. Age Filter We also consider a filter where we only include firms that have at
least two years of historical data. This filter is for controlling backfilling biases
in the dataset (Banz and Breen, 1986) and is especially relevant for return
forecasting as we only wish to consider information that was available to an

investor while training the model.

. Weighting Two common weighting procedures are used in most papers - equal

and value-weighted. While value-weighted portfolios require less rebalancing



and load heavily on larger stocks, equally weighted portfolios are costlier to
trade but are more diversified. As reported by Harvey and Liu (2020), about
40% of studies provide evidence using both equal and value-weighted portfolios.
We include this filter to understand the extent to which the returns to ML

strategies can vary with weighting.

8. Quantiles Paper on machine learning strategies typically considers decile port-
folios, but quintiles are also popular in asset pricing. A smaller number of
portfolios could reduce portfolio turnovers but each portfolio is likely to have a
large number of assets, including the ones where the underlying signal is rela-
tively weaker. Assuming a monotonous relationship between expected returns
and ML forecasts, deciles are likely to yield better returns compared to quintiles,

but it would be interesting to put this argument to the test.

These eight decisions imply 384 paths for each machine-learning model. The
choice of machine learning estimator can also be considered a significantly important
decision by the researcher. Barring a few exceptions, we do not consider the choice
of model as a separate decision due to significant heterogeneity between the models.
Instead, we choose to report the results of the 384 paths across different models.
Our choice of estimators is motivated by existing research in asset pricing. Gu et al.
(2020) and others show that methods that incorporate non-linear interactions among
variables perform better than linear models. Therefore, we consider non-linear ma-
chine learning models in our study. In the current draft, we consider Random Forests,
Gradient Boosting, and Neural Networks for training the return forecasting model.

In what follows, we provide a brief explanation of the models used in our study.
We also discuss the values of hyperparameters that we consider in training the ML

models.

1. Random Forests A random forest model is an ensemble method that aggre-
gates from multiple decision trees (Breiman, 2001). It follows the process of
bootstrapped aggregation, or Bagging. Bagging involves drawing multiple sam-
ples from the data, training individual decision tree models on these data, and
then aggregating the forecasts generated from all the models. Like many other
machine learning methods, users need to provide values of hyper-parameters.
The choice of hyper-parameters can be considered a source of methodological
variation. However,we do not consider it so because methodological variation

should be introduced by decisions where multiple choices exist and each of
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those choices are justifiable under some pretext. This condition, in our opinion,
does not hold for hyperparameters. While there may not be much theoretical
guidance available, researchers do not go on randomly choosing the values of
parameters. They either use some validation process, such as a holdout val-
idation (Gu et al. (2020)) or they will be guided by the values used in prior
literature. For our study, we take guidance from the values used in Gu et al.
(2020). We set tree depth as six and the number of trees as 300.

. Gradient Boosting Gradient Boosting (or Boosting) is another ensemble
method that combines the forecasts from multiple trees into a single average.
However, the process is different from Bagging. Boosting builds an additive
model by sequentially adding trees to a base model with low depth. At each
following step, a shallow tree is fitted to the errors of the previous model. This
procedure is continued till the final model is obtained (subject to hyperparam-
eters). We use the XGBoost algorithm of Chen and Guestrin (2016) to train
the models. We set the maximum tree depth as 6 and the number of trees (or
rounds) as 300.

. Neural Networks Neural Networks (or Artificial Neural Networks) are one
of the most popular machine learning methods. Neural networks are the go to
method for practical machine learning applications, including computer vision
and Generative Artificial Intelligence tools like Large Language Models (e.g.
Chat-GPT). Following studies like Gu et al. (2020) and (Avramov et al., 2023),
we use feed-forward artificial neural networks with three hidden layers with
32, 16, and 8 neurons respectively. We use the ReLLU activation function for all
nodes. To reduce over-fitting, we use /; penalization and batch normalization for
all trained models. To reduce the effect of random seed generation on forecasts,
we follow Gu et al. (2020) and generate ten sets of forecasts with different seeds

and average them out to arrive at a final ensemble forecast.

The methods and choices discussed above yield a common output, i.e. the monthly

forecasts of returns for the next year. We report the average returns generated by

strategies in given groups as a metric of portfolio performance. As we show later, we

derive similar results even if we use the Sharpe ratio. We also report the standard

and non-standard errors of the strategies used in our study. The standard error is

the Newey and West (1987) standard errors of the time series average of individual

portfolio returns, averaged across specifications. Following Menkveld et al. (2024)
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and Walter et al. (2023), we define the non-standard errors as the inter-quantile
range of average portfolio returns across all methodological specifications. We report

the results of our analysis in the next section.

3 Results

Figure 1 shows the distribution of returns across various specifications. We observe a
non-trivial variation in the monthly average returns observed across various choices.
The variation appears to be much larger for equally-weighted portfolios compared
to value-weighted portfolios, a result we find quite intuitive. The figure also points
towards a few large outliers. It would be interesting to further analyze if these extreme
values are driven by certain specification choices or are random. The variation in
returns could be driven by the choice of the estimator. Studies like Gu et al. (2020)
and Azevedo et al. (2023) report significant differences between returns from using
different Machine Learning models. Therefore, we plot the return variation after
separating models in Figure 2. Figure 2 makes it apparent that there is a considerable
difference between the mean returns generated by different ML models. In our sample,
Boosted Trees achieve the best out-of-sample performance, closely followed by Neural
Networks. Random Forests appear to deliver much lower performance compared to
the other two model types. Also, Figure 2 shows that the overall distribution of
performance is similar for raw returns as well as Sharpe Ratios. Therefore, for the
rest of our analysis, we consider long-short portfolio returns as the standard metric
of portfolio performance.

All in all, there is a substantial variation in the returns generated by long-short
machine learning portfolios. This variation is independent of the performance varia-
tion due to choice of model estimators. We now shift our focus toward understanding
the impact of individual decisions on the average returns generated by each of the
specifications. Therefore, we estimate the average of the mean returns for all specifi-
cations while keeping certain choices fixed. These results are in Table 1.

The results in Table 1 show that some choices impact the average returns more
than others. Equal weighting of stocks in the sample increases the average returns.
So does the inclusion of smaller stocks. The inclusion of financial and utilities appears
to have a slightly positive impact on the overall portfolio Performance. Just like a
size filter, the exclusion of low-price stocks tends to reduce overall returns. Further,

grouping stocks in ten portfolios yields better performance compared to quintile sort-



Figure 1: The distribution of mean portfolio returns (% p.m) across all specifications

1.2- 0.6-
0.9-
0.4-
0.6-
0.2-
0.3+
0.0- 0.0-
0.5 1.0 15 1 2 3 4
Value-weighted Mean-Return (% p.m) Equally-weighted Mean-Return (% p.m)

This figure plots the distribution of monthly average returns generated by equal and value-
weighted Machine-Learning portfolios. The returns are in percentage(%) per month.

ing. On average, larger training windows appear to be better. However, this seems
to be true largely for Neural Networks. For Neural Networks, the average return
increases from 0.87% to 1.41% per month. For boosting, the gain is from 1.41% to
1.45%. XGBoost works well with just five years of data. It takes at least 15 years of
data for Neural Networks to achieve the same performance. Interestingly, while Gu
et al. (2020) and (Avramov et al., 2023) both use Neural Networks with a large ex-
panding training window, our results show that similar performance can be achieved
with a much smaller data set (but with XGBoost). Finally, the process of keeping
only stocks with at least two years of data reduces the returns, but as discussed, this
filter makes our results more applicable to real-time investors.

While controlling for choices individually yields important insights, there may be
interactions at play. For example, the size and price filters have substantial overlaps.
Therefore, we need to control for all other factors to verify the conditional impact
of an individual choice. For this purpose, we run a multiple linear regression with
the average return of each of our specifications as the dependent variable. We create
dummy variables for each of the choices as the independent variables. In the Table 2,

we report the OLS estimates of this regression.
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Figure 2: Box-Plots of Model-wise Mean returns and Sharpe Ratios for all method-
ological choices
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This figure reports the distribution of monthly average returns and Sharpe Ratios generated by
Machine-Learning portfolios. The results are segregated according the Machine-learning model
used in training the forecasting model. The returns are in percentage(%) per month.
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Table 1: Average returns after keeping certain choices fixed

This table reports the summary of the monthly average returns generated by various
Machine Learning Portfolio Strategies considered in our study. We report the average
returns generated by keeping certain choices constant. The results contain combined
as well as model-wise results.

Average of Mean returns (% p.m.)

Decision Type Decision Value Overall NNET RF XGBoost
o Equal 1.46 162 0.89 1.88
Weighting Value 0.76 0.75  0.52 1.00
o No 1.38 149  0.90 1.74
Size Filter Yes 0.84 088 051 1.14
No 1.08 117 0.69 1.38
Financials Filter Yes 1.14 120  0.72 1.49
No 1.10 120  0.69 1.40
Utilities Filter Yes 1.12 117 0.72 1.47
o No 1.31 144  0.84 1.64
Price Filter Yes 0.91 093  0.57 1.23
. No 1.17 128  0.73 1.50
Age Filter Yes 1.05 109  0.68 1.37
. 5 0.92 099  0.58 1.18
Quantiles 10 1.30 1.38  0.83 1.69
5 0.98 0.87  0.65 1.41
Training window size 10 1.14 1.29 0.70 1.44
15 1.21 141 0.77 1.45

The coefficient estimates in Table 2 largely confirm what we observed earlier. The
intercept refers to the average returns generated by a specification assuming the values
of all dummy variables are zero. Therefore, for the results in the first column, the
intercept value of 1.38 signifies that a model without size filter yields 1.38% return
per month on average, and then the coefficient on the size filter shows that including
the size filter reduces the (average of) average return by around 0.53%.

Therefore, based on the results in Table 2, the financial and utilities filter does not
have a significant impact on the average mean returns. Applying both size and price
filters reduces the returns by around 0.53% and 0.39% respectively. XGBoost models
generate forecasts that yield higher portfolio returns compared to Neural Networks.

Longer sampling windows also carry significant utility for model training.
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Table 2: This table reports the results of the regression of average return on the
dummy variables of various specification choices. Value in the parentheses contain
the t-statistic of the coefficients

Dependent variable:

Mean Return

(1) (2) (3)
Intercept 1.380*** 1.600*** 1.540***
(47.300) (33.200) (28.300)
Size Filter —0.533**  —0.533** —(0.533***
(—13.000) (—13.600) (—15.500)
Fin Filter 0.058 0.058*
(1.480) (1.680)
Util Filter 0.024 0.024
(0.615) (0.700)
Price Filter —0.395"*  —0.395***
(—10.100) (—11.400)
Age Filter —0.128***  —0.128***
(—3.270) (—3.720)
RF —0.482***
(—11.400)
XGBOOST 0.249***
(5.900)
Est 10 Years 0.164***
(3.890)
Est 15 Years 0.231%**
(5.470)
Observations 1,152 1,152 1,152
Adjusted R? 0.127 0.203 0.385
Note: *p<0.1; *p<0.05; **p<0.01

13



Table 3: This table reports the standard and non-standard errors of portfolio re-
turns keeping various specification choices fixed. Ratio refers to the ratio of the
non-standard errors to the standard errors

Decision Type Decision Value SE NSE Ratio
o Equal 0.20 0.94 4.80
Weighting Value 0.22 043  1.98
o No 021 097  4.56
Size Filter Yes 0.20 0.58 2.93
No 020 0.72 3.67

Financials Filter Yes 021 0.77 3.61
No 0.20 0.71 3.45

Utilities Filter Yes 021 0.76 3.68
o No 022 091  4.15
Price Filter Yes 0.19 062  3.21
‘ No 022  0.78 3.57

Age Filter Yes 0.19  0.69 3.62
. 5 0.18  0.60 3.37
Quantiles 10 0.23 0.81  3.45
5 0.21  0.66 3.12

Training window size 10 020 0.76 3.71
15 0.20 0.72 3.58

These results make it clear that certain methodological choices have a significant
impact on the average performance of portfolios. Our analysis, however, can be
extended beyond the averages. We now estimate the non-standard errors of the
various portfolios observed and check how these methodological variations can be
reduced. We calculate the standard and non-standard errors as defined in Section 2.
The results of this analysis are contained in Table 3.

From the results in Table 3, we can conclude that the variation in returns due to
methodological choices (i.e. non-standard errors) far exceeds the sampling variation
(standard errors). Non-standard errors are frequently more than three times of the
standard errors. Therefore, this source of variation should not be overlooked and if a
study reports their findings using a particular set of choices, the overall results could
vary to a large extent with only some seemingly innocent methodological choices.
The quantitative results that we obtain are fairly intuitive. There is an extremely

large variation in return for equally weighted portfolios, which can be curtailed by
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Table 4: This table reports the standard and non-standard errors of value weighted
portfolio returns after removing micro-cap stocks and considering only the XGBoost
estimator. Ratio refers to the ratio of the non-standard errors to the standard errors

Decision Type Decision Value Mean SE NSE Ratio
No 090 020 031 153

Financials Filter Yes 098 022 035  1.62
No 087 021 028  1.37

Utilities Filter Yes 1.01 021 040 191
o No 092 021 037 177
Price Filter Yes 096 021 033 161
. No 096 022 039 1.74
Age Filter Yes 092 020 032 164
, 5 076 018 020  1.12
Quantiles 10 112 024 027 111
5 1.02 023 031  1.38

Training window size 10 089 021 032 154
15 092 019 028  1.45

giving more weight to larger stocks. Similarly, some variation across specifications
can be reduced by preferring to filter out micro-caps and penny stocks. These results
are not just useful for reducing method-induced variation, but also for enhancing the
practical and real-time applicability of ML-based portfolio strategies (Avramov et al.,
2023).

Therefore, the results highlight that there is a large variation in average returns
for portfolios created from various paths created from methodological choices. At
the same time, we also observe that certain choice paths may be disproportionately
contributing to this phenomenon. We clearly observe that the choice of weighting, size
and price filters, and the choice of ML method have a large impact on mean returns
as well as the non-standard errors. Therefore, in the next set of results, we control
for such obvious choices. In the results shown in Table 4, we eliminate micro-caps,
consider value-weighted portfolios, and only the XGBoost estimator. Therefore, we
control for the methodological return variation arising due to keeping smaller stocks
in the sample and attaching higher weights to them. We also eliminate the variation
due to the choice of ML estimator. We do all this to give a more realistic perspective
on the size of the non-standard errors.

As per the results in Table 4, we observe a marked decline in the non-standard error
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of our portfolios. However, despite the elimination of certain large-impact choices,
a large amount of methodological variation still persists. Non-standard errors are
still larger than the average standard errors. Some further filtering might reduce the
ratio further, but the fact still looms large - non-standard errors are large enough
to warrant our attention. Some choices could reduce their impact, but they are as

important as the other source of variation, i.e. standard errors.

4 Conclusion

Studies using machine learning techniques for return forecasting have shown a lot
of promise. However, as in empirical asset-pricing, researchers have to make many
choices revolving around the sampling and estimation of forecasting models.

We quantify the impact of methodological choices on the performance of machine-
learning-based strategies. Results from more than 1152 choice combinations show that
there is a sizeable variation in the average returns of ML strategies. The usage of
value-weighted portfolios with size filters can curb a good portion of this variation,
but cannot eliminate it. So, what is the solution to non-standard errors? Studies
in empirical asset pricing have proposed various solutions. While Soebhag et al.
(2023) suggests that researchers can show a distribution of outcomes across major
specification choices, Walter et al. (2023) argues in favour of reporting the entire
distribution across all specifications.

While we agree with reporting results across variations, we would also advise
against a one-size-fits-all solution for this issue. Despite an extensive computation
burden, It is possible to compute and report the entire distribution of returns for
characteristic-sorted portfolios as in Walter et al. (2023). However, when machine-
learning methods are used, reporting the full distribution is likely to impose an ex-
treme computational burden on the researcher. Although a full distribution is more
informative than a partial one, the costs and benefits of both choices need to be eval-
uated before giving generalized recommendations. In future drafts of this paper, we
intend to explore additional ways to control for methodological variation while im-
posing a modest burden on the researcher. At present, our recommendations tilt in
favor of first identifying selected high-impact choices (e.g. weighting and size filters)
on a smaller-scale analysis. Researchers can then, at the very least, report variations

of results across such high-priority specifications, while keeping the rest optional.
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