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Abstract

We use technical indicators, which are traditionally applied to stocks, to explore the

predictability of equity ETFs in a random forest classification model. Our analysis

suggests that technical signals constructed from stocks can forecast ETFs’ future per-

formance. We find that, without risk adjustment, equity ETF long-short portfolios

achieve a monthly mean return of up to 0.76%, with a t-statistic of 2.75. In line with

limits to arbitrage, we find that the level of market efficiency influences the predictabil-

ity of technical indicators. It is evidenced that Chinese-focused ETFs outperform US-

focused ones when applying the prediction model. Moreover, our findings are robust

to different model settings.
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1 Introduction

Technical analysis is based on the idea that historical price and volume data can be used

to forecast future returns. It is a preferred tool among market participants due to its ease of

understanding and implementation, clear entry signals, applicability in many markets, and

fewer data requirements.1 Menkhoff (2010) conducts a comprehensive survey of 692 fund

managers across five countries, including the U.S., and their findings reveal that while tech-

nical analysis is commonly used in conjunction with fundamental analysis, its importance as

a forecasting tool takes the lead, particularly when the focus shifts to short-term horizons.

In addition, Nti et al. (2020) show that 66% of documents reviewed, which include published

journal articles, conference proceedings papers, doctoral dissertations or supplementary un-

published academic working papers and reports, were based on technical analysis over 11

years (2007–2018). In this paper, we want to answer the question of whether technical trad-

ing signals, when applied using sophisticated machine learning methods, can predict the

future performance of international exchange-traded funds (ETFs).

Exchange-traded funds (ETFs), often more liquid instruments than stocks, have seen

substantial growth in both number and assets under management (AUM) in recent years,

and the growth rate is nearly three times higher than that observed in traditional mutual

funds over the period 2016-2022.2 ETFs have diversified significantly and can be categorized

based on their underlying assets into various types, including equity ETFs (e.g. SPDR S&P

500 ETF Trust), bond ETFs (e.g. VanEck Fallen Angel High Yield Bond ETF), commodity

ETFs (e.g. Invesco DB Commodity Index Tracking Fund), and more. In this paper, we

focus on equity ETFs, the dominant type in the ETF market.

Equity ETFs are investment funds traded on stock exchanges and track the performance

of specific stocks, but there is a significant difference in the availability of historical data

between ETFs and stocks. This data discrepancy affects the depth and breadth of poten-

tial empirical analysis for the ETF market, with stock markets having a longer historical

record compared to ETFs, which are relatively new financial innovations. Individual stocks

have extensive historical data going back decades, with records reaching back to the 1900s,

providing valuable insights into market dynamics. In contrast, first appearing in the 1990s,

ETFs, as newer entrants to the financial market, have a shorter history, which makes it

difficult to do insightful time series analysis and especially out-of-sample analysis. While

1https://medium.com/@pannipa/advantages-and-disadvantages-of-technical-analysis-39c7c8b9a3ef.
2https://www.oliverwyman.com/our-expertise/insights/2023/may/exchange-traded-funds-are-fueling-

market-opportunities.html.
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the number of ETFs continued to grow in recent years, which enriches potential research

subjects, this expansion does not equate to an extended historical record. This difference in

data availability presents unique challenges in analyzing ETF returns and developing robust

predictive models. Since ETFs can be seen as derivatives of stocks, and stocks can be seen

as underlyings of equity ETFs, our study addresses this issue by using stock technical pre-

dictors to forecast ETF performance, creatively adapting to the historical data constraints

of ETFs.

Our stock sample ranges from 1981 until 2021, and ETF sample spans from 2005 until

2022. All data are obtained from Datastream. Constructing various technical indicators

as predictors using international individual stock and ETF data, we explore the predictive

power using sophisticated machine learning methods for international ETFs. More specif-

ically, we use technical indicators that have been developed for stocks and apply these to

the new-established ETF market. Our objectives are twofold: firstly, to solve the data

availability problem stemming from the ETF market’s relatively short history, which poses

challenges for conducting out-of-sample tests, we use stock data to train the models and

make predictions in ETF data. Secondly, we conduct an international analysis to gain a

deeper understanding of the predictability of ETFs focused on different countries.

We employ the tree-based model in our analysis, and the motivation stems from recent

studies (e.g. Gu et al. (2020), Avramov et al. (2023), Leippold et al. (2022)). We explore the

predictive performance of tree models for forecasting future individual international ETFs’

performance using the global stock-trained model. Tree-based models are traditionally used

for classification problems, and the experimental research conducted by Nabipour et al.

(2020) reveals a substantial performance improvement in models when opting for binary

data over continuous data. Thus, we employ the classification-based model which is compa-

rable to Breitung (2023). Moreover, our study’s objective is not to predict the exact return,

typically addressed through a regression, but rather to establish a ranking of ETFs for each

month. This ranking, crucial for long-short investment strategy, is obtained through a clas-

sification model, providing outperformance probabilities that guide investment decisions.

Specifically, based on this ranking, we invest in the top 10% ETFs and short the bottom

10% ETFs for each month. Among all these tree-based models, we choose random forests,

known for their robustness, which have been applied to predict stock prices, assess credit

risk, and optimize investment portfolios. Ballings et al. (2015) set out to benchmark the

performance of ensemble methods (Random Forest, AdaBoost, and Kernel Factory) against

single classifier models (Neural Networks, Logistic Regression, Support Vector Machines,
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and K-Nearest Neighbors) in predicting stock price direction. It is determined that random

forest emerged as the top performer in this analysis.

Our results reveal that technical indicators for stocks are useful for predicting the future

ETF outperformance probability, which indicates a violation of the weak form of the efficient

market hypothesis. We generate the long-short mean return of 0.76% and after adjusting

for various risk factors the mean return is above 0.60%. Moreover, in line with previous

research that highlights the short-term efficacy of technical signals, we observe that such

predictability is most pronounced in the early months as we increase the rebalance interval

from one month to 36 months. After categorizing the technical indicators into five groups,

we find that models trained on a single category of indicators cannot generate a long-short

return as high as the model trained on all indicators combined. Given the efficiency of the

stock market that ETFs track, we find that the greater the efficiency of a market, the more

challenging it becomes to predict future performance. The long-short return generated from

the ETFs that invest in China is 0.87%, but only 0.48% in the US.

Accurately predicting future asset performance is not only crucial for investors and an-

alysts to make informed investment decisions but also an major topic in academic research.

Although the topic is compelling, there’s no definitive guide on how to choose the correct

models and what are the best predictors. To predict the ETFs’ returns, a wide range of

models, from traditional linear regression (e.g. Rompotis, 2011; Brown et al., 2021) to the

latest machine learning and deep learning techniques (e.g. Liew and Mayster, 2017; Day and

Lin, 2019), have been suggested. Rompotis (2011) examines predictability by regressing the

ETFs’ raw return on the four dummy variables representing the ETF star ratings, where

each variable indicates whether an ETF belongs to a specific class (four stars through one

star, respectively), with class-5 ETFs serving as the reference group through the model’s

constant term. Alternatively, Chen and Kuo (2006) propose a neural network-based decision

support system to provide investors with suggestions on transaction timing and transaction

strategies of Taiwan 50 index exchange-traded funds. Zhong and Enke (2019) predict the

daily return direction of the SPDR S&P 500 ETF using a deliberately designed classification

mining procedure based on hybrid machine learning algorithms. Machine learning tech-

niques, as the latest advancements, are capable of dealing with complexity and non-linearity

in data, and are especially suitable for large datasets.

Meanwhile, proposed predictors fall into two main categories: technical and non-technical

indicators, each offering different insights for forecasting returns. Chen and Kuo (2006) em-
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ploy various technical indicators, e.g. moving average, relative strength index, and stochastic

oscillation, to construct ETF transaction strategies in Taiwan. Including three U.S. ETFs

that track three indices of U.S. growth markets and six emerging market ETFs that track

MSCI country index, Hsu et al. (2010) examine the predictive ability of technical trading

rules: moving averages (MA) rules and filter rules (FR) and find with good executions and

low transaction costs, the technical analysts in large institutions may be able to make profits

in excess of risk premiums in the ETF market. Huang and Huang (2020) implement moving-

average (MA) trading strategies on the ETF market and backtests the strategies against the

buy-and-hold benchmark. They find while MA strategies generate positive average returns,

they are lower than those of the buy-and-hold strategy. On the other hand, non-technical

indicators for ETFs refer to factors not rooted in historical price and volume data, for exam-

ple, fund flow and market sentiment. Brown et al. (2021) find that non-fundamental demand

shocks, identified through ETF flows, can predict future ETF returns. Lee et al. (2021) use

the data of 47 single-country exchange-traded funds traded in the U.S. from 36 countries

during 2004–2017 and examines the impact of investor attention proxied by Google Search

Volume Index and home country-specific factors on ETF returns. However, there is no clear

evidence of whether the technical indicators are superior to the non-technical predictors or

vice versa.

While extensive literature explores ETF return predictability, the majority focuses on

particular markets or a select number of ETFs. For instance, Yang et al. (2010); Rompotis

(2011); Zhong and Enke (2019); Brown et al. (2021); Chen (2023) concentrate on U.S. ETF

return predictability. Day and Lin (2019) develop a robo-advisor with different machine

learning and deep learning forecasting methodologies in the Taiwan ETF market. Jares

and Lavin (2004) investigate foreign ETFs (Japan and Hong Kong) that trade on U.S. ex-

changes but provide broad exposure to foreign markets. Research on international ETFs

yields relatively scarce results. Broman (2020) investigates the return predictability for 4560

twin-pairs of Exchange-Traded Funds (ETFs) from 15 country pairs. Zhang et al. (2023)

use 29 country-/region-specific ETFs (including U.S.). With the new predictor, risk-neutral

moments of returns, the authors predict future excess returns of country-/region-specific

ETFs. Lee and Chen (2020) use 132 country-specific ETFs from 45 countries and examines

whether social media (Twitter) happiness sentiment and country-level happiness sentiment

indices predict cross-border ETF returns. Our empirical study distinguishes itself by com-

piling an extensive dataset of 9255 equity ETFs from 52 countries, constituting the most

comprehensive dataset in this field to our knowledge.
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Our study makes two significant contributions to this literature. First, we analyze the

international equity ETFs with the random forest classification model. Unlike previous re-

search that often focuses on a single market (e.g. US ETF market, Chinese ETF market) or

specific ETFs (e.g. energy ETFs, gold ETFs), our analysis encompasses a broader perspec-

tive, considering international markets. This international perspective allows us to derive

insights and conclusions that offer a more holistic view of the equity ETF landscape.

Second, we introduce an innovative approach by training our machine learning model on

stock market data and subsequently applying it to ETFs, thereby addressing the challenge

posed by the short historical data availability for ETFs. By employing this technique, we

illuminate the potential for leveraging historical stock market data to make more informed

predictions and investment decisions within the ETF market. Furthermore, our study di-

verges from conventional return prediction approaches by focusing on the relative ranking of

ETFs. This shift allows us to better evaluate their potential for outperformance relative to

one another. This emphasis on predicting outperformance probabilities, rather than absolute

values, enhances the precision of our assessment of cross-sectional predictability and is less

time-consuming when a large dataset is applied.

The remainder of the paper is structured as follows: Section 2 presents the data, machine

learning methodology, and trading strategy. Section 3 explores the main results, while Sec-

tion 4 conducts robustness checks. Finally, Section 5 offers the paper’s concluding remarks.

2 Data and Methodology

2.1 Train-Test-validation Split

In the context of machine learning algorithms, the “training” subsample is used for model

estimation, the “validation” subsample guides hyperparameter tuning based on forecast ac-

curacy, and the “testing” subsample evaluates predictive performance. Besides the training

phase, it is necessary to validate the model on unseen data to assess the performance and

generalization capability of the model. This splitting framework is essential due to the need

for rigorous model validation when working with historical stock and ETF data spanning

several decades. Our analysis involves the use of two specific model settings, each adhering

to a well-defined train-validate-test sequence. The first model is trained on stock data from

1981 to 2004, subsequently validated on ETF data from 2005 to 2010, and finally tested on
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ETF data from 2011 to 2022. The second model is exclusively trained on ETF data from

2005 to 2010, validated on ETF data from 2011 to 2015, and tested on ETF data from 2016

to 2022. (see Figure 1) Our approach primarily centers on the first model, which emphasizes

predictability across stocks and ETFs. This model is trained using global stock market data,

and we call it the global stock-trained model. Subsequently, it is applied to the ETF market.

Figure 1 displays the train-validation-test split across various scenarios and periods.

The training data set for stocks (ETF) encompasses a total of 2,474,549 (46,110) ob-

servations, providing a substantial volume of data for model training. When the model is

trained on the stock market, the ETF validation and ETF test data sets consist of 46,110

and 527,243 observations, enabling a comprehensive assessment of the model’s performance.

Additionally, when the model is trained on the ETF market, the ETF validation and ETF

test data sets comprise 127,825 and 399,418 observations.

[here insert Figure 1]

2.2 Stock and ETF Market Data

We collect international daily individual stock and equity ETF data across different

exchanges from Datastream, including variables such as open price, high price, low price,

closing price, turnover by volume, and return index. The daily stock and ETF data are

utilized to calculate various monthly technical indicators and monthly returns. To be pre-

cise, the final stock data set (ETF data set) comprises monthly observations of individual

stock returns (ETF returns) for the period from February 1981 to June 2021 (from January

2005 to December 2022). The stock returns (ETF returns) are calculated as the monthly

percentage changes in the total return index (Datastream code: RI). The choice to begin the

equity ETF data set from 2005 is attributed to the relatively limited availability of ETFs

before that period, ensuring a comprehensive collection of ETFs for analysis.

Table 1 presents the summary statistics of the data set. It provides an overview of the

number of observations, number of securities, number of countries, mean, and standard de-

viation for different subsets. In Panel A, the overall stock return data combines the training,

validation, and testing data sets, resulting in a total of 9,181,979 observations. It includes

66,905 securities from 67 countries, with a monthly mean stock return of 1.36% and a stan-

dard deviation of 21% from the year 1981 to 2021. Moving on to the equity ETF data,

the total data consists of 573,353 observations with 9,255 securities from 52 countries. The
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mean for this data is 0.53% with a standard deviation of 7% from January 2005 to December

2022. Panel B is structured as a train-validate-test split for the data set, segregating data

into distinct periods to facilitate rigorous evaluation and validation of models. This panel

encompasses four models as described in Figure 1. The training, validation, and testing pe-

riods for stocks and ETFs are distinctly outlined. The mean returns for stock training data

is 1.33%, with a standard deviation of 21%, while the mean returns for ETF training data is

0.74%, with a standard deviation of 10%. The mean returns of ETF validation (test) data

are 0.74% (0.51%) and 0.49% (0.52%) for two training models. Additionally, the average age

of ETFs varies between 7 to 16 months, with average fees reported between 0.43% and 0.47%.

[here insert Table 1]

Both stock and ETF data sets are carefully collected and cleaned to ensure data accu-

racy and consistency. Any missing values are addressed by fill-forward technique, ensuring

that no important information is lost. This technique uses the previous valid data point

and serves as a proxy for subsequent missing values until new valid values are identified.

Moreover, outliers are carefully identified and treated through winsorization at 0.1% level.

To overcome survivorship bias, the data set encompasses both active and inactive ETFs and

stocks.

2.3 Construction of Technical Indicators

To initiate our analysis, we employ the Technical Analysis Library (TA) in Python to

work with the historical daily price and volume data of the stocks and ETFs under con-

sideration.3 TA is a popular open-source library that provides a wide range of technical

analysis functions and indicators using time series data. Leveraging the capabilities of TA,

we utilize our comprehensive data set to calculate various technical analysis indicators, for

example, average directional movement index (ADX), relative strength index (RSI), awe-

some oscillator (AO), accumulation/distribution Index (ADI), and so on. These indicators

are organized into five distinct categories: momentum indicators, trend indicators, volatility

indicators, volume indicators, and other indicators. By computing these indicators, we are

able to identify significant patterns, discern prevailing trends, and detect potential trading

signals within the stock and ETF market. A comprehensive overview of all 172 technical

indicators, categorized into five categories, can be found in Table A.1 in the Appendix.

3https://technical-analysis-library-in-python.readthedocs.io/en/latest/.
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We construct the technical indicators on a daily level, but our investment strategy is re-

balancing portfolios at a monthly level, therefore, to ensure our analysis does not incorporate

information that is not accessible at the start of a month, we only include the most recent

indicators available from the previous month. By focusing on these month-end indicators, we

ensure consistency and capture the overall market trends and behavior at regular intervals.

These technical indicators are then combined with the next month’s returns, enabling us

to examine the monthly cross-sectional predictability between technical indicators and the

subsequent performance of ETFs.

2.4 Forecasting Methods and Portfolio Construction

We start with a crucial preliminary step — hyperparameter sensitivity analysis using

the training and validation dataset. Hyperparameters, which control model complexity, are

pivotal in machine learning but often lack clear theoretical guidance for optimal values and

this analysis aims to assess how varying hyperparameters affect our model performance. We

run different models using training data with different pairs of hyperparameters and then use

the validation data to test the trained models’ performances based on the accuracy metrics.

Finally, we select the hyperparameters that generate the highest accuracy and choose that

model for our further analysis. Notably, our choice of hyperparameters for the random forest

model is informed by the research conducted by Gu et al. (2020). The specific parameter

selections can be found in Table A.5 of their study, serving as a reference for our modeling

approach. For detailed insights into our sample splitting scheme and hyperparameter tuning

procedures for each model, please refer to Appendix Table A.2. We train predictive mod-

els using international stock and ETF data sets separately, and then we execute validation

phases to get the best hyperparameters, lastly, we test the best-performing model interac-

tively across both asset classes.

Then, leveraging the random forest classification model, we effectively assess the outper-

formance probabilities of ETFs at the monthly level. The model allows us to determine the

probability of ETFs exceeding the performance of the other ETFs. For each month, we label

the data as ’0’ if the return falls below the median return of that month, and as ’1’ other-

wise. During the prediction phase, the individual trees in the random forest classification

model independently generate their predictions for each class (0, 1), and the probability of

a specific class (here we focus on the class labeled as ’1’ which represents the outperforming

category) is obtained by averaging the probabilities assigned to that class by all the trees in
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the forest. The random forest classification model serves as our baseline model, providing

valuable insights into the relative rankings of ETFs.

Besides random forest classification models, we use a logistic regression to estimate the

probability of an event occurring based on input features. We also incorporate other machine

learning techniques for robustness checks, including decision tree classification (DT), which

is a supervised learning model that partitions the feature space into segments, using a tree-

like structure, to make categorical predictions based on the input features; gradient boosted

decision trees (GBDT), which is an ensemble learning model that combines multiple decision

trees, sequentially trained to correct the errors made by the previous trees, resulting in a

strong predictive model capable of handling complex relationships in the data, and XGBoost

classification, which is an optimized implementation of gradient boosting that incorporates

regularization techniques to prevent overfitting, making it a powerful and accurate model

for classification tasks.

In addition to our primary focus on ranking ETFs, we also employ a diverse set of regres-

sion models to further validate our results. These models include linear regression, decision

trees regression (DT), gradient boosting regression trees (GBRT), and XGBoost regression.

While each model has its unique characteristics, our objective remains consistent: to enhance

the robustness of our analysis by exploring various regression techniques. It’s important to

note that despite potential variations in training times, the precise return values are not

crucial for our portfolio construction approach, which aligns with our ultimate goal.

From a modeling perspective, tree-based models, like random forest models, have a lim-

itation when it comes to capturing and representing time trends in panel data. In our data

set, we collect observations over multiple periods for each cross-sectional unit, which means

we have panel data. Time trends are one aspect of our data that we can not ignore, but

these tree models are primarily designed to capture cross-sectional variation, where different

stocks and ETFs exhibit distinct behaviors. Although our analysis involves a monthly cross-

sectional ranking prediction, it’s crucial to note that we incorporate a time series perspective

when generating technical indicators. Technical analysis predominantly relies on time-series

data, emphasizing temporal patterns over cross-sectional predictability. By incorporating

these technical indicators, we effectively incorporate the time dimension into our model,

allowing us to gain insights into the time trends integral to our analysis.

Based on the predicted outperformance probabilities obtained from the random forest

classification models, we construct long-short portfolios. We assume that investors rebal-
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ance their portfolios monthly. For each month, we sort the available ETFs based on their

respective predicted outperformance probabilities using the previous technical indicators.

We implement a zero-investment strategy, which involves taking long positions on the top

10% of ETFs exhibiting the highest outperformance probability and short positions on the

bottom 10% with the lowest probability. The portfolios are constructed using equal weights

for each ETF position. We apply the same methods for constructing the stock portfolios.

3 Empirical Results

This section provides an overview of our empirical findings. In subsections 3.1 and 3.2,

we mainly explore the predictive power of stock technical indicators on ETFs. Moving on

to subsection 3.3, we narrow our focus to a specific subset of technical indicators. We ex-

amine whether the predictability is more pronounced for specific indicator categories. In

subsections 3.4, we investigate ETFs that focus on various investment areas. Our aim is to

determine if the ETFs that are invested in less efficient markets exhibit greater predictability

compared to the ETFs that are invested in more efficient markets. In subsection 3.6, we

describe the characteristics of the long and short portfolios in terms of ETF fees and the

age of the ETFs, helping us determine which ETFs with specific attributes are likely to be

included in the long portfolio and which ones in the short portfolio.

3.1 Short-Term Predictability

Before running the random forest classification model, we need to choose the optimal

hyperparameters using validation set. Figure 2 shows the results of our hyperparameter

sensitivity analysis for the two specified model settings. On the x-axis, we display the max-

imum features incorporated into each model, while the y-axis represents the accuracy of the

validation data. Each line on the graph corresponds to a different maximum depth level,

and the red circles highlight the best-performing hyperparameters for each specific model

setting. This analysis allows us to pinpoint the most suitable hyperparameter configurations

for our models, enhancing their predictive capabilities. We focus on the model trained on

stock data and applied to ETFs, and the result in the first sub-figure indicates that model

accuracy improves with an increase in the maximum features. However, this improvement is

limited when the maximum features reach 20. Our findings suggest that simply increasing

the model’s complexity—by increasing the maximum number of features and the model’s
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depth—does not necessarily yield better performance. This in turn explains that hyper-

parameter sensitivity analysis is necessary. We summarize the optimal hyperparameters in

Table 2. In consistent with Gu et al. (2020), we use 300 estimators for all the models. For

the model trained on stocks and validated on ETFs, the optimal settings are a maximum

depth of 6 and 30 maximum features. Conversely, for the model trained and validated on

ETFs, the ideal parameters are a maximum depth of 5 and 50 maximum features.

[here insert Figure 2]

[here insert Table 2]

Moving to the next step, we proceed by training our model utilizing technical indica-

tors extracted from the global stock and ETF market with the selected hyperparameters.

Table 3 provides empirical insights into the predictive potential of technical signals sourced

from both the global stock market and the global ETF market with monthly rebalancing.

The left section of the table displays results obtained from models trained on stock data

spanning the years 1981 to 2004. Then the model is validated using the data from 2005 to

2010 in the ETF market. This model is finally applied to evaluate the equity ETF market

from 2011 onwards. Conversely, the right section of the table shows outcomes from models

trained on ETF data spanning the years 2005 to 2010, validated from 2011 to 2015, and

subsequently used to assess the equity ETF market from 2016 onwards.

[here insert Table 3]

In the case of the model trained on stock information, we observe a substantial monthly

long-short mean return of 0.76% with high statistical significance (t-statistic: 2.75). Simi-

larly, after adjusting the market risks, the model yields a long-short mean return of 0.61%

with a t-statistic of 2.28. The risk-adjusted long-short mean returns after Fama–French

three-factor model and Carhart four-factor model are 0.60% (t-statistic: 2.24) and 0.62%

(t-statistic: 2.32) respectively. For the model trained on ETF technical indicators, we find

a somewhat lower raw return of 0.58% with less statistical significance (t-statistic: 1.84.

Additionally, in terms of risk-adjusted long-short mean return, the ETF-trained model also

did not outperform the stock-trained model. It’s important to consider that the evaluation

periods for the two models are different. The evaluation period for the ETF-trained model

is much less than for the stock-trained model due to the shorter history of the ETF market.

These findings highlight the importance and effectiveness of using the stock-trained model.
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In summary, the findings in Table 3 strongly support the concept that stock technical

indicators from closely linked markets can effectively predict equity ETFs’ performance.

This underscores the interdependence and responsiveness of ETFs to relevant data from

correlated markets, illuminating the relationship between stock and ETF markets. In the

following analysis, we concentrate on our global stock-trained model.

In addition to adjusting for risk-adjusted returns in Table 3, we consider the size and style

effects in our analysis of long and short portfolios. The adjustment is crucial because the

long or short portfolios may predominantly comprise ETFs that invest in large-cap stocks

or value stocks, potentially biasing the results. To neutralize the size and style effect, we

collect the Morningstar equity style box which categorizes funds into nine distinct categories

based on size (small, mid, and large) and style (growth, blend, and value). We adjust the

returns by subtracting the mean returns of ETFs within each size and style category before

calculating the overall portfolio return. The adjusted size-neutral and style-neutral returns

are presented in Table 4. We observe that the style-neutral return (0.57%) is higher than

the size-neutral return (0.49%) and with higher significance.

[here insert Table 4]

Moreover, Figure 3 depicts the out-of-sample cumulative return of the long-short portfo-

lio in the ETF market from the year 2011 onwards, utilizing the model trained on the global

stock dataset. The y-axis represents the cumulative returns, which range from 0 to 1.75%.

The x-axis is time, marked at two-year intervals. It shows an overall upward-sloping curve in

returns, starting near zero and peaking above 1.5% towards the end of the period. Notably,

there is a sharp decline post-2014 and a sharp increase in returns after 2020, indicating pe-

riodic fluctuations.

[here insert Figure 3]

3.2 Long-Term Analysis

Employing the global stock-trained model, our research reveals that at the monthly fre-

quency, stock indicators play a prominent role in forecasting ETF returns, as evident in

Table 3. We next examine the long-term horizon and we increase the rebalance periods.

In Figure 4, we illustrate the outcomes of portfolio rebalancing at different time intervals.

Starting from the left, the first graph represents the rebalancing every 6 months, followed

by the 12-month interval, then the 24-month interval, and finally, the 36-month interval
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on the far right. The y-axes measure monthly returns, fluctuating above and below zero.

We find that, in the ETF markets, robust predictability is primarily confined to the first

month and attenuates in the subsequent months. This phenomenon indicates the presence

of predictability in the short term while underscoring the absence of predictability in the

long term for ETF returns.

[here insert Figure 4]

One reason could be the creation and redemption process of ETFs. The involvement

of Authorized Participants (APs) in this process contributes to the unique characteristics

of ETFs. APs play a critical role in maintaining the structure and liquidity of ETFs by

creating and redeeming ETF shares based on supply and demand dynamics. This creation-

redemption mechanism ensures that the supply of ETF shares in the open market aligns

with the corresponding demand, facilitating fair pricing of ETFs. As a result, the long-term

predictability of ETF returns is expected to be absent, as the mechanism strives to keep

ETF prices in line with the underlying assets they track. However, in the short term, there

exists the possibility of predictability. This is due to the inherent characteristics of ETFs,

such as tracking errors, which arise from discrepancies between the ETF’s performance and

the underlying stocks it aims to replicate. These tracking errors can create short-term op-

portunities for predictability in ETF prices.

3.3 Indicator Importance

To gain insights into the contribution of each feature category in the prediction of ETF

ranking, we perform a ”Feature Importance” analysis, grouping the features into five cate-

gories as described in the Construction of Technical Indicators section. The grouped feature

importance from the random forest classification model is as follows: With a relative im-

portance of 0.36, the volatility group emphasizes the greatest significance among volatility-

related indicators. Volatility measures, such as average true range or bollinger bands, con-

tribute significantly to the model’s ability to classify and predict outcomes. The trend

group, with a relative importance of 0.25, ranks as the second most significant, following the

volatility group. Trend indicators, such as exponential moving average or moving average

convergence divergence, provide insights into the direction and strength of price movements.

The momentum group of features has a relative importance of around 0.25 and exerts a

comparable influence on the classification model as the trend group. It suggests that the

recent price movements and trends of the securities are influential factors. The volume group
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has the lowest relative importance of around 0.02, indicating that volume-related indicators

have a relatively minor influence on the classification model. However, they still contribute

to some extent in assessing predictability. The other group has a relative importance of 0.11,

indicating that other miscellaneous factors not explicitly categorized in the other groups con-

tribute to the classification model too. (see Figure 5)

[here insert Figure 5]

However, the essence of ”Feature Importance” analysis is the degree of dependency that

a well-trained model has on features, and it does not represent the features’ ability to gen-

eralize to unseen data (the test set). Especially when there is a distribution shift between

the training and testing data sets (here in our study, the stock data distribution and the

ETF data distribution are not the same), this default bias in the model’s feature impor-

tance analysis can become more significant. These grouped feature importances in Figure 5

demonstrate the varying contributions of different categories of technical indicators in the

random forest classification model only based on training data, with volatility and trend-

related factors appearing to have the most substantial impact.

To assess feature contributions in the test data, we train separate models using each group

of stock technical indicators and subsequently validate and test them in the ETF market.

The empirical findings, presented in Table 5, examine the predictive power of stock technical

indicators across the five categories and we find that not all categories are significant in mak-

ing predictions. The table shows significant differences in ETF returns between long and

short positions for momentum, volatility, and other indicators, which generate long-short

returns of 0.66%, 0.64%, and 0.61%, respectively. The long-short returns for each category

are smaller than the 0.76% achieved from the model that includes all categories. (see Table 3)

One thing that needs to be mentioned is that, after the hyperparameter sensitivity anal-

ysis with the set of hyperparameters from Gu et al. (2020), we end up with shallow and

simplest models trained on trend and volume indicators. The optimal max depth from the

validation data set is 1 and the models do not reliably predict the probability of outperfor-

mance. The predicted probabilities exhibit low variation, suggesting that the models are not

confident enough to strongly favor one class over the other. This renders them ineffective for

ranking purposes and for selecting long and short portfolios. There is a trade-off between

the simplicity of a model, which enhances its ability to generalize to unseen data, and the

model’s confidence in its predictions, as indicated by the variability in predicted probabili-
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ties. While a simpler model may exhibit superior generalization capabilities, it might also

fail to capture the data’s complexity adequately, potentially leading to underfitting. Thus,

we go beyond the hyperparameter’s set from Gu et al. (2020). We use the same number of

estimators as proposed by Gu et al. (2020) but increase the max depth and max features to

increase the model complexity. We allow the trees to grow without constraints and consider

many features for splits. Our objective is to balance model complexity with generalization

ability, thereby obtaining more varied and meaningful predictions of outperformance prob-

ability. In the end, the trend and volume indicators demonstrate weaker performance, with

returns of 0.29% and 0.04% respectively, and without statistical significance. The potential

reason could be that the optimal model performance heavily relies on the quality and rele-

vance of the features used. The current selection of features might not be providing enough

discriminative information for the model.

[here insert Table 5]

To confirm our analysis that the trend and volume indicators generate weak performance,

even with a complex machine learning model, we conduct a logistic regression, which is linear,

for comparison. The results, detailed in Table 6, indicate that models trained on momentum

indicators show a 0.58% long-short mean return with high significance. Conversely, models

trained on volume indicators exhibit a negative long-short mean return at -0.28%. Although

the model trained on trend indicators shows a positive long-short return, this is not statis-

tically significant. These findings from the logistic regression are consistent with those from

our deep random forest models with the max depth 115 for the trend model and 225 for the

volume model, reinforcing the conclusion that ’volume’ and ’trend’ indicators, when used

independently, may not possess strong predictive power. This suggests that the complexity

added to the random forest models does not translate to increased forecasting reliability for

these particular indicators and that the indicators may not have strong predictive power.

[here insert Table 6]

3.4 Different Investment Area

Utilizing the previous global stock-trained model, we conduct an analysis of predictabil-

ity across various markets. We categorize the ETFs based on their geographic focus. ”Ge-

ographic focus” refers to the specific regions or countries in which these ETFs invest, i.e.

investment area, rather than their countries of origin or domicile. Our data set comprises
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information on the geographic focus of 7,639 ETFs sourced from Refinitiv. In Table A.3 we

present the number of ETFs in each investment area. For analysis, we include only those

areas that have more than 200 ETFs to ensure a substantial sample size. The majority of

the ETFs in our data set invest in the US market.

Table 7 presents the evaluation results of ETF markets based on different geographic fo-

cuses. The evaluation includes ETFs that target global stocks, European stocks, US stocks,

Chinese stocks, Korean stocks, and global stocks excluding US stocks. Using the global

stock-trained model to make predictions on specific areas, we observe that all long-short

ETF returns are statistically significant, although their magnitudes differ. Notably, ETFs

focusing on the Chinese market achieve the highest long-short return at 0.87%, indicating

a potentially favorable investment opportunity. On the other hand, ETFs concentrating on

the US market exhibit the lowest long-short return at 0.48%. These findings suggest that

the geographic focus of ETFs plays a significant role in their performance, with Chinese-

focused ETFs demonstrating stronger potential for generating positive returns compared to

US-focused ETFs. This observation aligns with the notion that the predictability of ETFs

is influenced by the efficiency of the underlying stock market. In more efficient markets (e.g.

US), where information is quickly incorporated into prices, predictability tends to be lower.

Conversely, in less efficient markets (e.g. China), there may be greater opportunities for

predictability and potentially higher long-short returns.

[here insert Table 7]

In addition to evaluating monthly predictability, we also examine the cumulative returns

for each investment area over time. As depicted in Figure 6, initially, the cumulative returns

for each investment area show little disparity. However, as time passes, ETFs investing in the

Chinese market demonstrate significantly higher cumulative returns in comparison to ETFs

focused on the US market. This observation underscores that the reduced predictability

observed in more efficient markets not only affects short-term outcomes but also extends to

long-term investment performance. The divergence in cumulative returns over time suggests

that the Chinese market provides greater opportunities for generating sustained profitability

compared to the US market. These results emphasize the importance of considering the

efficiency of the underlying market when making investment decisions in ETFs.

[here insert Figure 6]
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3.5 Other Characteristics of the Portfolios

In the subsequent analysis, we examine specific characteristics of the ETFs held within

the long and short portfolios. The portfolios are constructed from our global stock-trained

model prediction. We focus on two key characteristics: ETF age, measured in months since

inception, and the net expense ratio, presented in percentage, and both are sourced from

Morningstar.

Table 8 provides an overview of the aforementioned ETF characteristics, including both

the long and short portfolios and the differences between long and short portfolios. On av-

erage, the ETFs within the long portfolios exhibit an age of approximately 64.78 months,

while those in the short portfolios have an average age of 53.46 months. Notably, there is a

significant age disparity between the two, the long portfolio is 11.32 months older than the

short portfolio on average. Regarding fees, the long portfolio carries an average fee of 0.49%,

while the short portfolio boasts a slightly higher fee of 0.60%, resulting in a substantial fee

difference of -0.11% that holds high statistical significance (t-statistic: -7.20).

[here insert Table 8]

In the Fama-MacBeth analysis presented in Table 9, we examine the influence of ETF

characteristics on their monthly returns, using the outperformance probability, age, and fees

as independent variables, and incorporating year-fixed effects to account for time-related

variations. This analysis reveals a significant positive relationship between ETF returns and

outperformance probability (with a coefficient of 0.033 and a t-statistic of 1.72), which con-

firms the effectiveness of our global stock-trained model. Conversely, a negative correlation

between fees and returns is consistent with our expectations and with the results in Table 8,

indicating that higher fees detrimentally affect returns; specifically, a 1-basis point (bps)

increase in fees (%) results in a 12-basis point decrease in monthly returns. While the anal-

ysis also suggests a positive trend between ETF age and returns, mirroring findings from

Table 8, however, this relationship does not reach statistical significance. These findings

shed light on the critical role that various characteristics play in determining the returns of

these investment vehicles.

[here insert Table 9]
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4 Robustness

4.1 Various models

In the previous section, our analysis primarily focuses on the implementation of the

random forest classification model. Now we aim to broaden our analytical framework by

incorporating a range of alternative models. This expansion includes not only different

classification-based models such as Linear Models, Decision Trees (DT), Gradient Boosting

Decision Trees (GBDT), and XGBoost but also regression-based models. By diversifying our

modeling approach, we seek to enhance the comprehensiveness and resilience of our analysis.

The results obtained from this extended experimentation, utilizing the same training and

testing data as presented in Figure 1 (training data in the stock market, and testing data in

either the stock market or ETF market), are outlined in Table 10.

Table 10 Panel A shows the evaluation of the stock market. The XGBoost model emerges

as the standout performer among the classification models in the stock market, achieving

the highest long-short return. This model delivers a long return of 1.83% and a short return

of -0.05%, resulting in a long-short mean of 1.88%. This indicates its remarkable ability

to capture profitable trading opportunities effectively. In Panel B, focusing on the ETF

market, the XGBoost model continues to be the top performer. It generates a long return

of 0.96% and a short return of 0.13%, resulting in a substantially high long-short mean of

0.83%, supported by high statistical significance. The outperformance of XGBoost compared

to others is not surprising, because of its advanced features such as regularization, system

optimization, parallel processing, and efficient handling of missing values, that enhance its

efficiency, accuracy, and ability to control over-fitting. Notably, when comparing the linear

model (Logit model) with other tree models, the return difference appears relatively modest.

This suggests that the linear model is also proficient in this context, indicating its compe-

tency in generating favorable results.

On the right side of Table 10, regression models trained on stocks demonstrate much

higher returns in the stock market but relatively lower returns in the ETF market compared

with the classification models. This phenomenon finds support in a recent study by Breitung

(2023), which underscores the propensity of regression models to place disproportionate em-

phasis on stocks with the most extreme return behaviors during their training process. Such

overemphasis, coupled with the inherent challenge of regression models in effectively gener-

alizing to new data, contributes to the observed performance discrepancy. As a result, we

observe a reduction in long-short returns within the ETF market for regression models. The
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presence of ’-’ symbols in the table indicates the absence of results for the GBRT model. This

exclusion is due to the GBRT model’s extensive computational time, making its use imprac-

tical and infeasible for this study. It is important to note that regression-based models entail

significantly longer execution times when compared to their classification-based counterparts.

In our analysis, to implement the long-short trading strategy, our target is the ranking of

the ETFs based on the outperformance probability, and the exact return prediction is not

necessary. In light of this, we prioritize the use of classification-based models for our analysis.

[here insert Table 10]

4.2 Test on bond ETF market

Next, we collect bond ETF data from Datastream and apply the global stock-trained

model to make predictions on the bond ETF market. Applying both regression-based and

classification-based models using the stock technical indicators, it is apparent that these

models are not well-suited for this particular financial domain. The inherent distinctions be-

tween global stocks and bond ETFs, where the underlying assets consist of corporate bonds

and government bonds, significantly contribute to the limited effectiveness of these models

when applied to the bond ETF market.

Table 11 presents the performance evaluation of various models when tested on the bond

ETF market. In the ”classification-based” category, it is apparent that the decision tree

model exhibits the best performance with a relatively high long-short mean return of 0.40%

and a t-statistic of 2.28. Besides, models such as the linear model, random forest, GBDT,

and XGBoost display a range of performance levels, yielding long-short mean returns that

span from -0.12% to 0.03% without statistical significance. These returns are notably lower

when compared to the long-short returns previously generated in the equity ETF market (see

Table 3 and Table 10). In the ”regression-based” category, the decision tree model shows

a low long-short mean return of 0.02% and no statistical significance. The random forest

model demonstrates a somewhat stronger performance with a return of 0.18% but also not

significant. These findings collectively suggest that the application of these models to the

bond ETF market is challenging, as their predictive power is notably limited.

Overall, the findings indicate that relying on models initially trained on stock data does

not lead to favorable outcomes when applied to the bond ETF market and it requires tailored

modeling approaches to effectively capture its specific characteristics. It is suggested that
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models trained on corporate bond and government bond data, as opposed to stock data,

might be more effective in the bond ETF market.

[here insert Table 11]

5 Conclusion

To conclude, by understanding the interconnected nature of stocks and equity ETFs and

dealing with the data history shortage problem, our research finds that the technical pre-

dictors, which have originally been used for stock selection, effectively predict the ETFs’

future performance. We observe the presence of outperformance predictability in the inter-

national ETF market for the short term using the global stock-trained model, suggesting

that monthly trading strategies are successful. However, our findings do not support the

same level of predictability in the long run, implying that long-term investment strategies

may not yield comparable results in the ETF market. The feature importance analysis in

the random forest classification model shows that volatility and trend indicators are crucial

for model prediction based solely on stock training data. Using different models trained on

grouped stock indicators, the out-of-sample tests on ETF testing data reveal that volatil-

ity and volume indicators significantly influence trading strategies with notable differences

in returns between long and short positions. In addition, consistent with expectations, we

identify that low-fee ETFs tend to be favored for investment, while high-fee ETFs are more

frequently chosen for short positions. The net expense ratio is associated with statistically

significant ETF returns. It is also important to note that the age of the ETFs does not

explain the ETF returns. However, when constructing long and short portfolios, it is ob-

served that older ETFs are preferred for buying, while younger ETFs are favored for selling.

Finally, examining the stock market’s underlying efficiency, our findings reveal that ETFs

tracking more efficient stock markets exhibit lower predictability. This suggests that in mar-

kets where information is rapidly incorporated into stock prices, fewer opportunities exist to

predict future price movements using historical data.

There are limitations to our research. Firstly, a substantial time gap exists between the

training and testing data periods, as illustrated in Figure 1. Our global stock-trained model

is trained on stock data spanning from 1981 to 2004 and subsequently tested on ETF market

data from 2011 to 2022, with a distinct six-year validation period in between. This simple

separation based on time points affects the model’s generalization to new market conditions
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because it lacks information from the subsequent six years. Secondly, we recognize the dy-

namic nature of financial markets, known for their adaptability to external influences, for

example in 2008 the global financial crisis, in 2020 the COVID-19 pandemic, and regulatory

changes, which can result in structural shifts in market characteristics. Partitioning our

data set into training, validation, and test sets, we recognize that such structural breaks can

disrupt market relationships and potentially impact the model’s predictive accuracy.
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Table 1: Summary Statistics
This table summarizes our dataset of both stocks and ETFs.We count the number of observations (# of Obs.), the number of stocks/ETFs (# of
Securities), the number of countries that are covered in our dataset (# of Countries), the mean of stocks/ETFs, and standard deviation of stocks/ETFs.
We include the average age and fee of ETFs.

periods # of Obs. # of Securities # of Countries Mean Std. Ave. Age Ave. Fee

Panel A: All Data

Stock return 1981.02-2021.05 9,181,979 66,905 67 1.36% 0.21 - -
ETF return 2005.01-2022.12 573,353 9,255 52 0.53% 0.07 7 0.43

Panel B: Train-Validate-Test Split Data

Stock return train 1981.02-2004.12 2,474,549 34,527 52 1.33% 0.21 - -

ETF return validate 2005.01-2010.12 46,110 1,300 29 0.74% 0.10 16 0.47
ETF return test 2011.01-2022.12 527,243 9,234 52 0.51% 0.06 7 0.43

ETF return train 2005.01-2010.12 46,110 1,300 29 0.74% 0.10 16 0.47

ETF return validate 2011.01-2015.12 127,825 3,279 42 0.49% 0.06 13 0.45
ETF return test 2016.01-2022.12 399,418 9,234 51 0.52% 0.06 7 0.43
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Table 2: Model Parameters After Tuning

This table shows the best parameters that are tuned. We include the number of trees in the forest
(n estimators), the maximum depth of the tree (max depth), and the number of features to consider when
looking for the best split (max features).

Train on Stocks Train on ETFs

n estimators max depth max features n estimators max depth max features

300 6 30 300 5 50
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Table 3: One-Month Predictability

This table reports cross-asset predictability results for two different training scenarios: one with models
trained on stock data (1981-2004) and the other with models trained on ETF data (2005-2010). The evalu-
ation periods start in 2011 for stock trained model and in 2016 for ETF trained model. The table is divided
into four panels. Panel A shows the evaluation of these models when applied to ETF raw return predictions,
displaying metrics such as long return, short return, long-short mean return, and mean return. Panel B,
C, D present the evaluation results for risk adjusted ETF raw returns. ***, **, and * indicate statistical
significance at the 1%, 5%, and 10% levels, respectively.

Train on Stocks Train on ETFs

long return short return l-s mean return long return short return l-s mean return

Panel A: ETF raw return

1.02% 0.26% 0.76%∗∗∗ 0.98% 0.40% 0.58%∗

(2.75) (1.84)

Panel B: ETF CAPM Alpha

0.43% -0.23% 0.61%∗∗ 0.30% -0.14% 0.34%
(2.28) (1.17)

Panel C: ETF 3 Factor Alpha

0.44% -0.20% 0.60%∗∗ 0.32% -0.11% 0.35%
(2.24) (1.19)

Panel D: ETF 4 Facor Alpha

0.56% -0.11% 0.62%∗∗ 0.42% -0.18% 0.52%∗

(2.32) (1.81)

Table 4: Adjusted Predictability

This table reports cross-asset predictability results for two different training scenarios: one with models
trained on stock data (1981-2004) and the other with models trained on ETF data (2005-2010). The table
is divided into two panels. Panel A shows the evaluation of these models when applied to stock market
predictions, displaying metrics such as long return, short return, long-short mean return, and mean return.
Panel B presents the corresponding evaluation results for ETFs. ***, **, and * indicate statistical significance
at the 1%, 5%, and 10% levels, respectively.

long return short return l-s mean return

Panel A: Size Neutral ETF raw return

0.37% -0.12% 0.49%∗

(1.74)
Panel B: Style Neutral ETF raw return

0.41% -0.16% 0.57%∗∗

(2.14)
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Table 5: Selected Indicators

This table reports the classification results when we restricted our training data to different categories of
stock technical indicators. The models are trained from 1981 until 2004 and evaluated from 2011 until 2022.
The results are tested on the ETF market. ***, **, and * indicate statistical significance at the 1%, 5%,
and 10% levels, respectively.

Indicators n estimators max depth max features long return short return l-s mean return

momentum 300 6 20 0.91% 0.26% 0.66%∗∗∗

(2.57)

trend 300 115 sqrt 0.72% 0.43% 0.29%
(1.55)

volatility 300 3 sqrt 0.90% 0.26% 0.64%∗∗

(2.23)

volume 300 225 sqrt 0.64% 0.60% 0.04%
(0.25)

others 300 4 3 0.80% 0.19% 0.61%∗∗

(2.15)
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Table 6: Selected Indicators from Logistic Regression

This table reports the classification results when we restricted our training data to different categories of
stock technical indicators. The models are trained from 1981 until 2004 and evaluated from 2011 until 2022.
The results are tested on the ETF market. ***, **, and * indicate statistical significance at the 1%, 5%,
and 10% levels, respectively.

Indicators long return short return l-s mean return

momentum 0.92% 0.34% 0.58%∗∗∗

(2.98)

trend 0.67% 0.41% 0.26%
(1.29)

volatility 0.80% 0.38% 0.42%
(1.42)

volume 0.44% 0.72% -0.28%∗∗

(-2.45)

others 0.83% 0.08% 0.75%∗∗∗

(2.78)
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Table 7: Model test for different investment area

This table reports the results from the global stock-trained model testing on the different investment areas
from 2011 onwards. We show, for different investment areas, the long return, short return, and long-short
return with statistical significance.

investment area long ret short ret l-s mean

Global 1.07% 0.41% 0.66%∗∗

(2.35)

Europe 1.08% 0.35% 0.73%∗∗∗

(2.60)

US 0.82% 0.34% 0.48%∗

(1.60)

China 1.07% 0.20% 0.87%∗∗∗

(3.92)

Korea 1.05% 0.36% 0.69%∗∗

(2.44)

Global Ex US 1.08% 0.36% 0.72%∗∗

(2.57)

Table 8: The characteristic of the ETFs

This table presents information on the age of these ETFs and their net expense ratios. The age of ETFs,
measured in months, is divided into categories for the long portfolio and short portfolio, along with the
age difference between the two. Similarly, the net expense ratios are provided for both portfolios, with
the percentage sign (%) omitted for brevity, and the fee difference is calculated. The table’s statistical
significance is denoted by asterisks and t-statistics in parentheses.

Age of ETF Net Expense Ratio

long port age short port age age diff long port fee short port fee fee diff

Average 64.78 53.46 11.32∗∗∗ 0.49 0.60 -0.11∗∗∗

(7.30) (-7.20)
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Table 9: Fama-MacBeth Analysis of ETF characteristics

This table reports estimates from Fama MacBeth 2-step regressions of ETF return on outperformance proba-
bility from previous global stock model, age of ETF measured in month and net expense ratio. The time-fixed
effect is included.

ETF return outperformance prob t-stat age t-stat fee t-stat

0.033∗ (1.72)
0.033∗ (1.81) 4.20× 10−6 (0.48)
0.034∗ (1.72) 8.47× 10−4 (-0.39)
0.035∗ (1.81) 3.71× 10−6 (0.38) 7.20× 10−4 (-0.33)

Table 10: Other Model Settings with Validation

This table reports a robustness check for our global stock-trained model. We include classification-based
and regression-based models. The classification-based models are linear model (logit model), decision tree,
gradient boosting decision tree, and XGBoost, and the regression-based models are linear model (ordinary
least square), decision tree, gradient boosting regression tree, and XGBoost. We evaluate the model on ETF
markets and show the long return, short return, and long-short return with statistical significance. The ’-’
symbol is used to indicate the absence of results for the Gradient Boosting Regression Tree (GBRT) model.

Classification Based Regression Based

Model long ret short ret l-s mean long ret short ret l-s mean

Logistic Regression 0.86% 0.19% 0.67%∗∗∗ 0.53% 0.40% 0.13%
(3.16) (0.53)

Decision Tree 0.90% 0.26% 0.64%∗∗ 0.76% 0.50% 0.26%
(2.48) (1.37)

GBDT/GBRT 0.74% 0.37% 0.37%∗∗ - - -
(2.28) -

XGBoost 0.96 0.13 0.83%∗∗∗ 0.62% 0.30% 0.32%
(3.36) (1.59)
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Table 11: Bond ETF Mareket

This table reports a robustness check on the bond ETF market for our global stock-trained model. We
include classification-based and regression-based models. The classification-based models are linear model
(logit model), decision tree, gradient boosting decision tree, and XGBoost, and the regression-based models
are linear model (ordinary least square), decision tree, gradient boosting regression tree, and XGBoost. We
evaluate the model on bond ETF markets and show the long return, short return, and long-short return
with statistical significance.

Classification Based Regression Based

Model long ret short ret l-s mean long ret short ret l-s mean

Logistic Regression 0.08% 0.13% -0.05% 0.44% 0.06% 0.38%
(-0.38) (1.16)

Decision Tree 0.37% -0.03% 0.40%∗∗ 0.04% 0.02% 0.02%
(2.28) (0.26)

Random Forest 0.16% 0.28% -0.12% 0.24% 0.06% 0.18%
(-0.33) (1.19)

GBDT/GBRT 0.08% 0.13% -0.05% 0.17% 0.07% 0.10%
(-0.38) (1.22)

XGBoost 0.06% 0.03% 0.03% 0.18% 0.10% 0.08%
(0.39) (0.68)
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Figure 1: Train-Validation-Test Split

Figure 2: Hyperparameter Sensitivity Analysis
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Figure 3: Cumulative ETF Returns Over Time

Figure 4: Different Rebalance Periods
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Figure 5: Grouped Feature Importance

Figure 6: Cumulative ETF Returns Over Time In Different Areas
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Appendix

Table A.1: Overview of Technical Indicators

Volume indicator Volatility indicator Trend indicator Momentum indicator Other indicator

volume adi volatility bbm trend macd momentum rsi others dr

volume obv volatility bbh trend macd signal momentum stoch rsi others dlr

volume cmf volatility bbl trend macd diff momentum stoch rsi k others cr

volume fi volatility bbw trend sma fast momentum stoch rsi d others dr rel

volume em volatility bbp trend sma slow momentum tsi others dlr rel

volume sma em volatility bbhi trend ema fast momentum uo others cr rel

volume vpt volatility bbli trend ema slow momentum stoch

volume vwap volatility kcc trend vortex ind pos momentum stoch signal

volume mfi volatility kch trend vortex ind neg momentum wr

volume nvi volatility kcl trend vortex ind diff momentum ao

volume adi rel volatility kcw trend trix momentum roc

volume obv rel volatility kcp trend mass index momentum ppo

volume cmf rel volatility kchi trend dpo momentum ppo signal

volume fi rel volatility kcli trend kst momentum ppo hist

volume em rel volatility dcl trend kst sig momentum pvo

volume sma em rel volatility dch trend kst diff momentum pvo signal

volume vpt rel volatility dcm trend ichimoku conv momentum pvo hist

volume vwap rel volatility dcw trend ichimoku base momentum kama

volume mfi rel volatility dcp trend ichimoku a momentum rsi rel

volume nvi rel volatility atr trend ichimoku b momentum stoch rsi rel
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Table A.1 Continued: Overview of Technical Indicators

volatility ui trend stc momentum stoch rsi k rel

volatility bbm rel trend adx momentum stoch rsi d rel

volatility bbh rel trend adx pos momentum tsi rel

volatility bbl rel trend adx neg momentum uo rel

volatility bbw rel trend cci momentum stoch rel

volatility bbp rel trend visual ichimoku a momentum stoch signal rel

volatility bbhi rel trend visual ichimoku b momentum wr rel

volatility bbli rel trend aroon up momentum ao rel

volatility kcc rel trend aroon down momentum roc rel

volatility kch rel trend aroon ind momentum ppo rel

volatility kcl rel trend psar up momentum ppo signal rel

volatility kcw rel trend psar down momentum ppo hist rel

volatility kcp rel trend psar up indicator momentum pvo rel

volatility kchi rel trend psar down indicator momentum pvo signal rel

volatility kcli rel trend macd rel momentum pvo hist rel

volatility dcl rel trend macd signal rel momentum kama rel

volatility dch rel trend macd diff rel

volatility dcm rel trend sma fast rel

volatility dcw rel trend sma slow rel

volatility dcp rel trend ema fast rel

volatility atr rel trend ema slow rel

volatility ui rel trend vortex ind pos rel

trend vortex ind neg rel

trend vortex ind diff rel
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Table A.1 Continued: Overview of Technical Indicators

trend trix rel

trend mass index rel

trend dpo rel

trend kst rel

trend kst sig rel

trend kst diff rel

trend ichimoku conv rel

trend ichimoku base rel

trend ichimoku a rel

trend ichimoku b rel

trend stc rel

trend adx rel

trend adx pos rel

trend adx neg rel

trend cci rel

trend visual ichimoku a rel

trend visual ichimoku b rel

trend aroon up rel

trend aroon down rel

trend aroon ind rel

trend psar up rel

trend psar down rel

trend psar up indicator rel

trend psar down indicator rel
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Table A.1 Continued: Overview of Technical Indicators

20(12%) 42(24%) 68(40%) 36(21%) 6(3%)
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Table A.2: Hyperparameters for All Methods

number of estimators max depth max features

RandomForestClassifier 300 1,2,3,4,5,6 3,5,10,20,30,50,’sqrt’
DecisionTree 1 1,2,3,4,5,6 3,5,10,20,30,50,’sqrt’
GBDT/GBRT 300 1,2,3,4,5,6 3,5,10,20,30,50,’sqrt’

XGBoost 300 1,2,3,4,5,6 -

Table A.3: Overview of Investment Area

Investment Area Number of ETFs

United States of America 2199
Global 1238
China 913
Europe 383
Korea 369

Global Ex US 296

Total 7639
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